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ABSTRACT

Wireless communication systems are different from the wired systems mainly in three as-

pects: fading, broadcast, and superposition. Wireless communication networks, and multi-user

communication networks in general, have not been well understood from the information-

theoretic perspective: the capacity limits of many multi-user networks are not known. For

example, the capacity region of a two-user single-antenna interference channel is still not

known, though recent result can bound the region up to a constant value. Characterizing

the capacity limits of multi-user multiple-input multiple-output (MIMO) interference network

is usually even more difficult than the single antenna setup.

To alleviate the difficulty in studying such networks, the concept of degrees of freedom

(DoF) has been adopted, which captures the first order behavior of the capacities or capacity

regions. One important technique developed recently for quantifying the DoF of multi-user

networks is the so-called interference alignment. The purpose of interference alignment is to

design the transmit signals structurally so that the interference signals from multiple interferers

are aligned to reduce the signal dimensions occupied by interference.

In this thesis, we mainly study two problems related to DoF and interference alignment:

1) DoF region of MIMO full interference channel (FIC) and Z interference channel (ZIC) with

reconfigurable antennas, and 2) the DoF region of an interference network with general message

demands.

For the first problem, we derive the outer bound on the DoF region and show that it is

achievable via time-sharing or beamforming except for one special case. As to this particular

special case, we develop a systematic way of constructing the DoF-achieving nulling and beam-

forming matrices. Our results reveal the potential benefit of using the reconfigurable antenna in
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MIMO FIC and ZIC. In addition, the achievability scheme has an interesting space-frequency

interpretation.

For the second problem, we derive the DoF region of a single antenna interference network

with general message demands, which includes the multiple unicasts and multiple multicasts

as special cases. We perform interference alignment using multiple base vectors and align the

interference at each receiver to its largest interferer. Furthermore, we show that the DoF region

is determined by a subset of receivers, and the DoF region can be achieved by considering

a smaller number of interference alignment constraints so as to reduce the number of time

expansion.

Finally, as a related research topic, we also include a result on the average throughput

of a MIMO interference channel with single-user detector at receivers and without channel

state information at transmitters. We present a piecewise linear approximation of the channel

throughput under weak, moderate and strong interference regimes. Based on that we determine

the optimal number of streams that a transmitter should use for different interference levels.
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CHAPTER 1. INTRODUCTION

Fading and interference are two challenges in wireless communication system design. Fading

characterizes how the wireless signal gets attenuated through the channel and it has been widely

and intensively investigated under point-to-point communication scenario for the past decades.

One major advance in wireless communications is the usage of multiple antennas [1, 2], which

improves the spectrum efficiency by exploring spatial dimensions. Such improvement is usually

termed as multiplexing gain in the wireless literature. Multiple antenna technique can also be

used to improve the link quality, i.e., achieving a diversity gain. The goal of diversity is to

design the transmit signal such that multiple replicas of the useful signal are available to the

receiver, therefore, the error probability due to signal under deep fading can be reduced. The

tradeoff between multiplexing and diversity gains is quantified in [3].

There are many multi-user communication systems in practice. One such example is the

code division multiple access system, which has been widely used in cellular network or wireless

local area network. The rapid growth of throughput demands in practical multi-user system has

become the momentum of the research on multi-user communication theory recently. However,

in multi-user wireless system, the signal of one user will experience both fading from the channel

and suffer from interference of the other transmitters. Therefore, the capacity of multi-user

system is in general difficult to solve.

1.1 Capacity of multi-user system with single antenna

There are some multi-user system whose capacity regions are known. For example, the

multiple access channel (MAC) and the degraded broadcast channel (BC) [4]. As to the others,

we know limited results. In the following, we will briefly review the result on interference
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channel (IC), whose capacity region, even with only two users, has been a long open problem.

1.1.1 Interference channel

In interference channel, there are multiple transmit-receive pairs, each of them sees the

interference from the other pairs. Therefore, if one pair achieves higher rate by increasing the

signal-to-noise ratio (SNR), the link quality of the other pairs is sacrificed as more interference

is introduced. Hence, unilateral action are in general not overall optimal. For two-user IC,

when only one of the two transmit-receive pairs is subject to interference, the interference

channel is termed as Z interference channel (ZIC). To avoid confusion, we will call the channel

where both pairs are subject to interference the full interference channel (FIC). Although ZIC

is simpler than FIC in its structure, the capacity region of ZIC is unsolved.

One major result, discovered in 1975 by Carleial [5], is that interference may not reduce the

capacity. That is, if both of the two receivers encounter very strong interference, the receiver

can first decode the message of the interference link and then subtract it before decoding its

own message. Sato [6] further extended it to strong interference case and Costa, El Gamal

[7] presented the achievability and converse proofs. Although Carleial and Sato discussed the

problem in Gaussian IC, Costa and El Gamal’s proof dealt with the general case, hence the

capacity region of general IC under the strong and very strong interference is known.

The weak or mixed interference channel is more difficult to handle, as the receiver can not

decode the messages of the other users in general. Various outer bounds have been introduced,

e.g., Sato’s [8] and Carleial’s [9] bounds. However, they are not universally better than each

other. As to the achievable rate, the best known result is credited to Han and Kobayashi (HK)

[10, 11], where they introduced the concept of private and common messages. A more powerful

joint decoder is used at receiver. However, their achievable region needs to be optimized over

all the possible input distributions and hence complicated.

One breakthrough in Gaussian IC is from Kramer [12], where he used “genie” method to

obtain an outer bound. Etkin, Tse and Wang [13] further used the genie method to developed

a close upper bound for the two-user FIC, in the sense that the maximum difference between
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their upper bounds and a simple HK scheme is at most 1 bit over all the choices of SNR and

interference-to-noise ratio (INR). Another important result in Etkin’s paper is that based on

the first order approximation, i.e., if both SNR and INR are large, the generalized degrees of

freedom of Gaussian FIC in some circumstances are the same as that when the interference

is completely ignored as noise. This observation suggests that treating interference as noise

could be optimal for weak interference scenario and the sum capacity of very weak two-user

FIC is settled [14, 15, 16]. The results therein can be extended to interference channel with

more than two users in which treating interference as noise is sum capacity optimal.

1.1.2 General Gaussian interference channel

When it comes to interference channel with more than two users, a natural question is

whether the HK scheme used in [13] is still near-optimal. Interestingly, it is shown that a

structured code is much better than HK scheme for the general multi-user IC. This is due to a

recently proposed deterministic channel model, in which the channel strength is quantized and

approximated such that there is no background noise and the approximated channel becomes

“deterministic”. The deterministic channel model has been successfully applied to different

wireless channels, including the two-user FIC [17], the ZIC without channel state information at

transmitter (CSIT) [18], the many-to-one (generalization of ZIC) and one-to-many interference

channels [19], the wireless information flow network (generalization of relay channel) [20], BC

without CSIT [21], where the gap between the achievable rate using deterministic channel and

capacity region can be bounded up to a constant value.

1.2 Capacity of multi-user system with multiple antennas

The deterministic channel model has been demonstrated to be a powerful tool of bounding

the capacity region of different multi-user systems with single antenna. However, when it

comes to the multiple antenna case, the approximation it introduced could be arbitrarily large

[20, 22]. This is because the deterministic channel only approximate the signal strength and it

lacks the ability of modeling the phase information, which is very important in multiple input
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multiple output (MIMO) wireless communication. Although the capacity regions of some

special MIMO multi-user systems are known, the capacity regions of the others, like their

single antenna setups, are unknown. In addition, it is difficult to bound the capacity regions

within some constant value as deterministic channel model can not be used here. Hence,

instead of trying to characterize the capacity region completely, the degrees of freedom (DoF)

region is widely used, which characterizes how capacity scales with transmit power as the SNR

goes to infinity.

MIMO MAC channel is one of few multi-user systems for which the capacity is known when

CSIT is available. As the dual channel of MIMO MAC, MIMO BC has one transmitter and

multiple receivers, where the transmitter needs to send different messages to different receivers.

The capacity region of MIMO BC is recently found [23] via dirty-paper coding.

As to the MIMO interference channel, its capacity region with very strong and aligned

strong interference is also solved [24]. However, the results on other cases are very limited.

The sum capacity under the weak interference or noisy interference case can be found in

[25, 24]. There are also many results on the capacity regions or sum capacities of certain

MIMO interference channels, e.g., MIMO many-to-one interference channel [26], MIMO Z

interference channel [27]. In [28], the outer bound of a class of two-user interference channel is

obtained, which can be applied to Gaussian MIMO IC. It is shown that capacity region can be

bounded up to one bit per complex receive dimension from a general HK achievable region [29].

Such a gap is recently reduced to a constant gap, rather than receive dimension dependent, in

[30]. However, the results do not apply to the cases with more than two users.

As the capacity of MIMO interference channel is a very difficult problem, many works are

conducted on the achievable rate, e.g., MIMO IC with single user detector [31], the benefit of

CSI feedback [32], the connection of Shannon capacity and game theory [33, 34].

1.3 An alternate approach: the DoF studies

The idea of DoF is not a new concept at all. It is well-known as the multiplexing gain in

point-to-point communication scenarios. However, it was termed as the spatial DoF in [35],
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referring to the maximum multiplexing gain, which has slightly different meaning from what

it is being used for in recent literature. To clarify, we will call the maximum multiplexing

gain as total DoF. The total DoF of MIMO MAC and BC can be directly obtained from their

capacity results. And the total DoF of two-user MIMO FIC is obtained in [35]. All these three

channels have integer numbers of total DoF, which also corresponds to the number of antennas.

Due to this reason, the DoF of MIMO multi-user system were thought to be integer values.

Interestingly, it is found that a non-integer multiplexing gain can be achieved over MIMO X

channel [36]. The MIMO X channel is a channel with two transmitters and two receivers where

each transmitter has messages for both receivers. This simple channel contains MIMO MAC,

MIMO BC and MIMO FIC as a portion of itself. And it is shown in that it can achieve more

DoF in MIMO X channel than in any of its component.

Some interesting research has been conducted under MIMO X channel setup. The followup

work of [37] further investigates this channel. Both the achievability scheme and outer bound

are derived and shown to be exactly the same. It is shown that when all the transmitters

and receivers have same M number of antennas, the total DoF is 4M/3. The achievability is

based on interference alignment, where the terminology was first introduced. The basic idea of

interference alignment is to appropriately precode the transmissions so that interference from

undesired transmitters is aligned at the intended receivers. Such an idea was first used in [36]

and clarified in [37]. Although the DoF region is of 4 dimensions, it is completely characterized

and it remains the only channel whose DoF region is in a linear space of dimensionality more

than three but fully known regardless of the antenna numbers.

Although the capacity region of multi-user MIMO interference channel is not solved, the

analysis of DoF is shown to be very useful to reveal the capacity potential of MIMO inter-

ference channel. For example, it was conjectured that the channel capacity of interference

channel is limited with large number of users [38]. However, it is shown that for K-user M

antenna interference channel, total MK/2 DoF can be achieved asymptotically via infinite

time (frequency) expansion under block fading channel [39]. Indicating the capacity of each

user is unbounded regardless of the user number K. Unlike MIMO X channel, the interference
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alignment scheme for MIMO interference channel requires infinite symbol extension. Although

the achievable scheme is not practical, it indeed reveals the potential capacity gain from in-

terference alignment and stimulates the DoF related research. Many exciting results and a

number of innovative schemes for multi-user communications have been explored since.

The classic interference alignment scheme proposed in [39] is asymptotic in time. The key

idea is to simultaneously satisfy a number of alignment constraints using channel extension,

such an alignment scheme was also used in MIMO wireless X network [40], which is the gener-

alization of X channel setup with more users and each transmitter has an independent message

for all the receivers. Many alignment schemes has been proposed thereafter, including but not

limited to, real interference alignment [41, 42, 43, 44], ergodic interference alignment [45, 46],

asymmetric complex signaling [47], blind interference alignment [48, 49] and retrospective in-

terference alignment [50, 51, 52], where the last two schemes are proposed for no CSIT and

delayed CSIT cases, respectively.

The CSIT assumption can change the nature of the problem and result in different DoF

regions when compared with full CSIT case. For example, It is well-known that the absence of

CSIT will not affect the DoF region of MIMO MAC [53]. However, the DoF region of MIMO

BC is not changed only when the number of transmit antennas is less than or equal to the

minimum number of receive antennas among all the receivers [54, 55] . As to the interference

channel, the DoF region of two-user MIMO FIC with CSIT has been obtained in [35], where it

is shown that zero forcing is enough to achieve the DoF region. The DoF regions of two-user

MIMO BC and FIC without CSIT are considered in [54], where there is an uneven trade-off

between the two users. Except for a special case, the DoF region for the FIC is known and

achievable. Similar, but more general result of isotropic fading channel can be found in [56].

The DoF regions of the K-user MIMO broadcast, interference and cognitive radio channels are

derived in [55] for some cases. However, the special case of two-user in [54] remains unsolved.

Recently, it is shown in [48] that if the channel is staggered block fading, we can explore

the channel correlation structure to do interference alignment, where the upper bound in the

converse can be achieved in some special cases. For example, it is shown that for two-user
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MIMO staggered block fading FIC with 1 and 3 antennas at transmitters, 2 and 4 antennas at

their corresponding receivers and without CSIT, the DoF pair (1, 1.5) can be achieved. Also

recently, it is shown in [57] that the previous outer bound is not tight when the channels are

independent and identically distributed (i.i.d.) over time and isotropic over spatial domain.

A different solution to the same problem from an interference localization point of view can

be found in [58]. So by now the DoF region of two-user MIMO FIC is completely known for

both the CSIT and the no CSIT cases (channel state information at receiver (CSIR), is always

assumed available), provided that the channel is i.i.d. over time and isotropic over spatial

domain. However, when the channel is not i.i.d. over coherent block such as in the “staggered”

fading channels [48], the DoF could be larger.

The staggered block fading idea in [48] was further clarified in [49], where a blind in-

terference alignment scheme is also proposed for K-user multiple-input single-output (MISO)

broadcast channel to achieve DoF outer bound when CSIT is absent. It is shown that although

the DoF region is reduced when CSIT is absent, using reconfigurable antenna at receivers can

achieve the same total DoF of the CSIT case.

The research of DoF study on delayed CSIT is motivated by [50, 51] for MISO BC. The

authors of [52] further explore this problem for different channels. The DoF regions of MIMO

two-user FIC and BC with delayed CSIT are reported in [59] and [60], respectively.

Interference alignment is also considered with multicast messages. General message request

sets have been considered in [46] where each message is assumed to be requested by an equal

number of receivers. Ergodic interference alignment is employed and an achievability scheme

is proposed. However, only the achievable sum rate is derived. The precise DoF region has

not been identified. The work in [46] has been further extended to the multi-hop equal-length

network in [61].

A related effort is the study of the compound MISO BC [62, 43], where the channel between

the base station and mobile user is drawn from a finite set. As pointed out in [62], the compound

BC can be viewed as a BC with common messages, where each messages is requested by a

group of receivers. Therefore, the total DoF of compound BC is also the total DoF of a BC with
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different multicast groups. It is shown that using real interference alignment scheme [42], the

outer bound of compound BC [63] can be achieved regardless of the number of channel states

one user can have. In addition, the blind interference alignment scheme [49] is proposed to

achieve the total DoF of such a network using reconfigurable antennas. The blind interference

alignment scheme is demonstrated to have the ability of multicast transmission as all the

receivers within one multicast group using same antenna switching pattern would be able to

receive the same intended message.

1.4 Summary of main results

In this section, we summarize the main contributions of the thesis.

Problem 1. Find out the reason why staggered fading channel can increase the DoF region of

two user MIMO full interference channel. Explore the usage of reconfigurable antenna in this

channel and quantify the benefit of reconfigurable antennas when there is no CSIT.

The DoF region of two user MIMO FIC without CSIT was recently solved under the i.i.d.

isotropic fading channel assumption. However, it is interesting that using channel correlation

structure, the achievable DoF region can be larger. The recent work on reconfigurable antenna

shows a way of creating channel variation which can be explored to enhance the DoF region for

MISO BC. It is not clear whether such a method can be used for MIMO FIC or not. Our goal

is to check the potential benefit of the reconfigurable antenna in MIMO FIC and characterize

its DoF region. In addition, we want to find a systematic way of achieving the DoF region for

arbitrary antenna number at transmitters and receivers.

Our main contributions for this problem can be summarized as follows:

(i) We obtain the DoF region as a function of the number of available antenna modes and

reveal the incremental gain in DoF that each extra antenna mode can bring. We suc-

cessfully use the reconfigurable antenna in MIMO FIC and ZIC. Unlike [49], we use the

reconfigurable antenna at one transmitter to create channel fluctuation. We completely

characterize the gain offered by configurable antennas. It is shown that in certain cases
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the reconfigurable antennas can bring extra DoF gains. In these cases, the DoF region is

maximized when the number of modes is at least equal to the number of receive antennas

at the corresponding receiver.

(ii) We propose systematic constructions of the beamforming and nulling matrices for achiev-

ing the DoF region. The construction bears an interesting space-frequency interpretation.

and it can be used for any number of reconfigurable antennas.

Problem 2. Characterize the DoF region of interference network with general message de-

mands.

There are wireless applications where a common message may be demanded by multiple

receivers, such as in a wireless video streaming — each broadcast message may be requested by

a group of receivers. However, in current work, there are few results on interference alignment

with multicast transmission or combination of both unicast and multicast. Only the total

DoF for K-user MIMO interference channel have been identified. The DoF region is unknown

except for three user case and there is no general way of achieving asymmetric DoF points.

We consider a natural generalization of the multiple unicasts scenario considered in previous

works. We consider a setup where there are K transmitters, each with a unique message. There

can be J (not necessarily K) receivers, each of which is interested in some arbitrary subset of

the K messages, i.e., we consider interference networks with general message demands. This

includes as a special case, for instance, multiple unicasts and multiple multicasts. Our main

observation is that by appropriately modifying the achievability scheme of [39], we can achieve

general points in the DoF region when all the transmitters and receivers have single antenna.

We also provide a matching converse bound, that serves to establish the DoF region. To our

best knowledge, the DoF region in this scenario has not been considered before. Our main

contributions can be summarized as follows:

(i) Finding the DoF region for single antenna interference networks with general message

demands. We modify the scheme of [39] for the achievability proof. In particular, we
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achieve general points in the DoF region by using multiple base vectors and aligning the

interference at each receiver to its largest interferer.

(ii) Achieving the DoF region with reduced interference alignment constraints. We discuss

extensions of our approach where the DoF region can be achieved by considering fewer

interference alignment constraints, allowing us to work with a smaller level of time-

expansion. We demonstrate that essentially the region depends only on a subset of

receivers whose demands meet certain characteristics.

1.5 Thesis organization

We briefly give a outline of the thesis in the following.

Chapter 2 introduces the basic concepts and the channel model. In this chapter, we shall

discuss the fundamentals of DoF related ideas and notation. We also discuss the different

assumptions of channel state information. The system model is presented as well.

Chapter 3 gives an overview of interference alignment techniques. We compare different

alignment schemes and summarize the important results on DoF related studies. At the end of

this chapter, we review one classic asymptotic interference alignment scheme through a simple

example to present the general principle of interference alignment.

Chapter 4 investigates the DoF region of two-user MIMO FIC and ZIC. We quantify how

the CSIT affect the DoF region. In particular, we propose to use reconfigurable antenna to

change channel coherent time and explore the benefit on DoF region from the channel variation.

We propose to perform beamforming jointly on both space and frequency domain to achieve

the DoF region.

Chapter 5 focuses on the multi-user interference network. We generalize the K-user M

antenna interference channel to an interference network with general message demands where

each transmitter has only one message but it can be requested by any receivers. Our results

establish the DoF region of single antenna system. Our approach is to use multiple base vectors

to construct beamforming columns for all the messages jointly, and aligning the interference

signals to the largest one at all the receivers.
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Chapter 6 provides one related work on the achievable throughput in multi-user interfer-

ence channel without CSIT. We consider a simple stream number selection method based on

piecewise linear approximation of the channel throughput when there is only single user detec-

tor at all the receivers. A solution of mutual information calculation with repeated eigenvalues

is presented as well.

Finally, the thesis is concluded in Chapter 7. We also discuss the possible future research

directions.

1.6 Notation

We use the following notation: boldface uppercase (lowercase) letters denote matrices (vec-

tors). For a matrix A, AT and AH denote the transpose and Hermitian of A, respectively.

dim(A) stands for the dimensionality of a vector space and span(A) is the vector space spanned

by the column vectors of matrix A. We use Im to denote a size m ×m identity matrix and

1m to denote an all-one column vector with length m. We also use notation like Am×n to

emphasize that A is of size m × n. 0 and 1 denote all one and all zero matrices (vectors),

respectively, whose sizes shall be clear based on context. [A]pq is the (p, q)th entry of matrix

A. And [a]p is the pth entry of vector a. For two matrices A and B, A ≺ B means that the

column space of A is a subspace of the column space of B. And We use A⊗B to denote the

Kronecker product of A and B.

We use CN (0, 1) to denote the circularly symmetric complex Gaussian (CSCG) distribu-

tion with zero mean and unit variance. In addition, we use CN (µ,Σ) to denote the distri-

bution with mean µ and covariance matrix Σ for complex Gaussian random vector. Denote

gn(a) := [1, a, a2, . . . , an−1]T . A size n × m Vandermonde matrix based on a set of element

{a1, a2, . . . , am} is defined as Vn(a1, a2, . . . , am) = [gn(a1), gn(a2), . . . , gn(am)]. R,Z,C are the

real, integer and complex numbers sets. We define RK
+ := {(x1, x2, . . . , xK) : xk ∈ R, xk ≥

0, 1 ≤ k ≤ K} and define ZK
+ similarly. Finally, we use I(x;y) to denote the mutual informa-

tion between x and y. The differential entropy of a continuous random variable x is denoted

as H(x).



www.manaraa.com

12

CHAPTER 2. DEGREES OF FREEDOM AND WIRELESS

INTERFERENCE NETWORK MODEL

One fundamental characterization of communication channel is the channel capacity, which

is the maximum transmission rate that can be achieved with some coding scheme such that

the information can be decoded with arbitrary small error probability. However, the channel

capacities of many channels remain unknown, especially in multi-user communication scenario.

The reason is not because of the channel noise but due to the interference from different users.

This is especially the case in high SNR region, where the signal and interference is so large

that the effect on channel capacity due to noise is negligible. This thesis is primarily focusing

on the high SNR region. In this chapter, we will present the preliminary concept of degrees

of freedom, wireless channel model, and channel state information assumptions. The system

model will also be given in this chapter.

2.1 Degrees of freedom: the basic concept

In this section, we will introduce the basic idea of DoF.

2.1.1 Degrees of freedom: definition

Degrees of freedom is the asymptotic scaling of the capacity with respect to the logarithm

of the SNR. More specifically, if the rate of a message as a function of the SNR ρ is R(ρ), then

the DoF associated with the message is defined as

d = lim
ρ→∞

R(ρ)
log(ρ)

. (2.1)

The DoF is also known as the multiplexing gain [3]. Fig. 2.1 show the capacity of three

well-known channels. the DoF of each channel is the slope of capacity curve in high SNR
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Figure 2.1 DoF of some channels

region. The DoF difference between two channels indicates the difference between channel

capacity can be arbitrarily large when SNR goes to infinity. DoF is a simple but important

figure of merit for comparing the capacities of different channels. In addition, it is useful to

determine whether some transmission scheme is capacity-optimal or not, as any scheme which

is capacity-achieving must be DoF optimal as well.

For point-to-point channel, DoF itself is enough to characterize the capacity scaling in high

SNR region. However, in multi-user communication scenario, it is necessary to use DoF region

to reflect the trade-off among different users.

2.1.2 Degree of freedom region

Consider an interference network with K transmitters and m independent messages Wi, 1 ≤
i ≤ m, where K is not necessarily equal to m. Let |Wi| be the cardinality of message i.

Assuming the average power of each transmitter is P and the additive noise has unit variance,

there exists some coding scheme such that rate Ri(P ) = log |Wi|/n can be achieved with

arbitrary small error probability, where n is the number of channel uses. Let C(P ) denotes

the capacity region of the interference network, which is the set containing all the achievable
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Figure 2.2 DoF region of a two-user MIMO MAC.

rate tuples R(P ) = (R1(P ), R2(P ), . . . , Rm(P )). The DoF region is defined as [39, 40]

D :=
{
d = (d1, d2, . . . , dm) ∈ Rm

+ :

∃(R1(P ), R2(P ), . . . , Rm(P )) ∈ C(P ),

such that di = lim
P→∞

Ri(P )
log(P )

, 1 ≤ i ≤ m
}
. (2.2)

Instead of trying to characterize the capacity region completely, the DoF region character-

izes how capacity region scales with transmit power as the SNR goes to infinity.

Fig. 2.2 shows the DoF region of a two-user MIMO MAC. The receiver has 6 antennas,

whereas two transmitters have 4 and 5 antennas, respectively. For other multi-user communi-

cation channels, it may be difficult to characterize the DoF regions completely. In that case,

total DoF, which is the maximum sum DoF, can be a good metric to describe the channel. For

example, the total DoF of the MAC channel shown in Fig. 2.2 is 6, which implies that the sum

capacity is of the order of 6 log(P ) at high SNR.
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2.2 CSI model

It is well-known that when the transmitter and receiver know the communication channel,

the channel capacity may be further enhanced. Such knowledge is usually termed as channel

state information (CSI). The availability CSI can be significant in improving system perfor-

mance. In general, CSI is usually assumed available at the receiver as it can be estimated

using training sequence. However, as to transmit side CSI, it can be further divided into

many cases. In time division duplex system where the communications in both directions are

using the same frequency, the CSIT can be obtained by reciprocity assumption. That is, the

CSIR obtained in receiving stage can be converted to CSIT at transmitting stage provided

that the channel does not change significantly. Unfortunately, such a reciprocity assumption

is not valid in general [64], and the CSIT is usually obtained by the feedback from the receiver

[65, 66, 67, 68]. Because of quality and throughput limitations of the feedback link, the CSIT

can be imperfect due to decoding error on the feedback link and may also be out of date if the

physical channels vary fast. There are many assumptions for the imperfect channel information

model, e.g., the transmitters only know the statistics of the channel [69], the quantized channel

state information [70], delayed channel state information [51]. Although CSIT is not perfect

in general, it is still common to make the perfect CSIT assumption in order to analyze the

fundamental system performance as it leads to the performance upper limits of the practical

communication systems.

Most CSIR and CSIT are local, which implies that the receivers or transmitters only know

the channels that they are associated with. When the transmitters know not only the channels

they are using, but also the channels of other transmitters, the CSI is called called global CSIT

[39].



www.manaraa.com

16

2.3 Channel model

2.3.1 Single antenna model

One fundamental difference between wired channel and wireless channel is the channel

variation. Variation can be either due to moving surroundings and/or moving transmitters

(receivers). In addition, due to signal reflection, diffraction and scattering, the signal from the

transmitter to receiver will go through different pathes. Therefore, wireless channel is usually

modeled as multipath time/frequency varying channel. The channel variation can be further

divided into large scale and small scale fadings. The first one characterizes the signal change

in macro time/distance, and it is usually due to the natural path loss and the shadowing

of large objectives. Whereas the small scale fading characterizes the signal change in micro

time/distance, and it is usually due to the reflection and scattering from the local surroundings.

In practice, the wireless channel is modeled statistically. For example, when the receiver has

rich statistically independent pathes due to scattering and reflection, it is reasonable to assume

that the signal is coming from all directions. In addition, using the central limit theorem, the

real and image parts of the channel coefficient can be approximated as i.i.d. Gaussian random

variables with zero mean and same variance. Such an assumption will lead to a well-known

Rayleigh fading channel model, whose channel magnitude is Rayleigh distributed. Another

well-known statistic channel model is the Rician fading channel, where the line-of-sight (LOS)

path is also taken into account.

2.3.2 Multiple antenna model

Multiple antenna technique is very useful in wireless communications, which introduces

the spatial dimension in addition to the time and frequency dimensions. Assuming there are

M antennas at transmitter, N antennas at receiver, the channel can be represented by using
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matrix representation as

H =




h11 h12 · · · h1M

h21 h22 · · · h2M

...
...

. . .
...

hN1 hN2 · · · hNM




, (2.3)

where hji is the scalar channel from the ith transmitter to the jth receiver. Here, we omit the

time index for simplicity. When either transmitter or receiver has signal antenna, the MIMO

channel is reduced to single input multiple output (SIMO) or MISO channel, respectively. And

the channel is represented by a vector other than matrix.

When all the channel coefficients are Rayleigh distributed, the channel is termed as MIMO

Rayleigh fading channel, which can be further characterized as follows [71]

H = Φ1/2
R HwΦ1/2

T , (2.4)

where Hw is a white Gaussian matrix with all entries i.i.d. Gaussian distributed with zero

mean and unit variance. ΦT and ΦR are the covariance matrices at transmitters and receivers,

respectively. This model will be used in Chapter 6.

2.4 System model

In this thesis, we mainly study the MIMO interference channel and its generalization. We

first start from the generalized model.

2.4.1 Generalized interference network

We consider a single hop wireless interference network with K transmitters and J receivers.

The number of transmit (receive) antennas at the kth transmitter (jth receiver) is denoted

as Mk, 1 ≤ k ≤ K (Nj ,1 ≤ j ≤ J). We assume that each transmitter has one and only

one independent message. For this reason, we do not distinguish the indices for messages and

that for transmitters. Each receiver can request an arbitrary set of messages from multiple

transmitters. Let Mj be the set of indices of those messages requested by receiver j.
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The channel between transmitter k and receiver j at time instant t is denoted as Hjk(t) ∈
CNj×Mk , 1 ≤ k ≤ K, 1 ≤ j ≤ J . We make the following assumptions on the channel matrices

1. The channels between transmitters and receivers are frequency flat block fading with co-

herent time length L. Within each coherent block, the channels between all the transmit

antennas and all the receive antennas remain constant.

2. The elements of all the channel matrices at different coherent blocks are independently

drawn from some continuous distribution.

3. The channel gains are bounded between a positive minimum value and a finite maximum

value to avoid degenerate channel conditions.

4. The probability of Hjk(t) belonging to any subset of CNj×Mk that has zero Lebesgue

measure is zero.

The received signal at the jth receiver can be expressed as

yj(t) =
K∑

k=1

Hjk(t)xk(t) + zj(t), (2.5)

where zj(t) ∈ CNj is an independent CSCG noise with each entry CN (0, 1) distributed, and

xk(t) ∈ CMk is the transmitted signal of the kth transmitter satisfying the following power

constraint

E(||xk(t)||2) ≤ P, 1 ≤ k ≤ K.

Remark 1. If J = K, Mk = Nj = M, ∀j, k, L = 1 and Mj = {j},∀j, the general model we

considered here reduces to the well-known K-user M antenna interference channel as in [39].

2.4.2 Time expansion system model

In this thesis, we also introduce a time expansion system model. The model is useful for

transmitting a codeword over τ time slots, where τ is not necessarily equal to coherent time

length L. We use the tilde notation to indicate the time expansion signals, where the number
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of slots of time expansion signals shall be clear within the context. In general, by default, for a

vector x, x̃ = vec(x(1),x(2), · · · ,x(τ)) and for a matrix V , Ṽ = diag(V (1),V (2), · · · ,V (τ)).

The time expansion channel of (2.5) over τ time slots can be simply given as

ỹj =
K∑

k=1

H̃jkx̃k + z̃j . (2.6)

2.4.3 Isotropic Fading

Isotropic fading characterizes the fading in spatial domain. We say a complex-valued matrix

R is isotropic if its product with any unitary matrix V , RV , has the same distribution as R

[57]. A MIMO channel is isotropic faded if the channel matrix H is isotropic. Similarly, a

MISO channel is isotropic if the channel vector h is isotropic. Many channel distributions are

isotropic faded, such as the point-to-point MIMO Rayleigh fading channel.

The isotropic fading simply implies that all the channel directions from the transmitter to

the receiver are statistically equivalent. Therefore, from the perspective of transmitter, there

is no preference on any channel direction when the CSIT is absent. For point-to-point MIMO

Rayleigh channel, the capacity achieving scheme when there is no CSIT is to use equal power

allocation [2]. When there is CSIT, the capacity achieving scheme is the water-filling solution

[2]. However, in terms of DoF, water-filling only provide a power gain, not DoF gain. Hence,

isotropic fading is a very good channel assumption in studying the DoF of interference network,

especially when there is no CSIT.

2.4.4 Reconfigurable antenna

The model we presented so far assumes the transmitters and receivers are equipped with

conventional antennas. In wireless communications, there exists benefit of using reconfigurable

antennas [49], which are different from the conventional antennas as they can be switched to

different pre-determined modes so that the channel fluctuation can be introduced artificially.

We define one antenna mode as one possible configuration of a single antenna such that by

switching a radio frequency (RF) chain to a different mode, the channel between this antenna

and other antennas that form a wireless link is changed. Different antenna modes can be
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realized via spatially separated physical antennas, or the same physical antenna excited with

different polarizations, and so on. The benefit of antenna mode switching lies in the fact that

channel variation can be artificially created, without the need to increase the number of RF

chains. Although any transmitter or receiver can be equipped with reconfigurable antennas,

we only consider using the reconfigurable antennas at transmitters in this thesis.

The reconfigurable transmit antenna can be switched to different modes in different time

slots within each coherent block, where the channels between all the transmitter modes and the

receive antennas remain constant. Denote S as the total number of antenna modes available

at the transmitter. When S is larger than the number of RF chains, the transmitter has the

freedom to use different modes at different slots. We assume that the channels between the

S modes of the reconfigurable transmit antennas and any receivers is i.i.d. distributed over

different time blocks. However, for a given antenna mode usage pattern over the length of a

whole coherent block, the effective channel is no longer i.i.d. distributed over the time.

2.5 Summary

In this chapter, we presented the basic idea of DoF and introduced the wireless channel

model. DoF indicates the channel capacity scaling at high SNR, which is very useful for

analyzing the multi-user wireless system, whose channel capacity remains unknown for many

cases.

Wireless channel is different for wired channel mainly in three aspects: fading, broadcast-

ing and superposition. We briefly reviewed the wireless channel for both single antenna and

multiple antenna systems. We presented the system model of general interference network at

the end of this chapter. The isotropic fading assumption and reconfigurable antenna model

are also covered, which will be explored in Chapter 4.
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CHAPTER 3. SURVEY OF INTERFERENCE ALIGNMENT

3.1 Interference alignment methods

The basic idea of interference alignment was initially proposed in [36], which was further

clarified in [37]. Interference alignment has emerged as an important technique of dealing with

interference, which has many different applications in the area of wireless communications

[37, 39, 40]. And it is also been applied to other areas, e.g., data storage [72, 73], network

coding [74, 75]. Receivers in a wireless setting have to contend with interference from undesired

transmitters in addition to ambient noise. Traditional efforts in dealing with interference has

focused on reducing the power of interference, whereas in interference alignment the focus is on

reducing the dimensionality of the interference subspace. The subspaces of interference from

several undesired transmitters are aligned so as to minimize the dimensionality of the total

interference space. For the K-user M antenna interference channel, it is shown that alignment

of interference simultaneously at all the receivers is possible, allowing each user to transmit at

approximately half the single-user rate in the high SNR scenario [39]. The idea of interference

alignment has been successfully applied to different interference networks [40, 76, 63, 62, 43],

demonstrating unlimited capacity potential when the SNR tends to infinity.

There is no universal way of doing interference alignment. Depending on the channel model

and CSI assumption, alignment methods can be completely different. In the following part

of this section, we will briefly review some existing interference alignment schemes and give

comparison of them.
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3.1.1 Asymptotic interference alignment

Many interference alignment schemes are based on asymptotic method. The most famous

alignment scheme, which was first proposed in [39] for MIMO interference channel is based

asymptotic interference alignment. The key assumption is that the channel is time-varying and

the transmitters are assumed to have global channel state information. Alignment is achieved

by constructing beamforming matrices on all the transmitters jointly over the time expanded

channel. The advantage of such a scheme is that it can be applied over many channels as

long as the channel coefficients have zero probability to be the same. However, the perfect

global CSIT assumption is almost impossible. First, the channel state information must be

quantized in practical system therefore the probability that some channel coefficients are the

same is no longer zero. The global CSI also introduce large feedback among different users

which is impractical. In addition, infinite time expansion is needed to achieve the theoretical

DoF upper bound. Nevertheless, Such a scheme is very useful to explore the fundamental limit

of communication channels and it has been successfully applied to wireless X network [40],

MIMO IC with different number of transmit and receive antennas [77].

3.1.2 Real interference alignment

The real interference alignment[41, 42] is proposed for constant channel model where the

asymptotic alignment scheme cannot be used. It requires that all the data are sent using

rational numbers. Real interference alignment is based on Khintchine-Groshev theorem in

the field of Diophantine approximation. The real interference alignment is an alignment in

signal strength domain and it is in fact a lattice alignment, which is studied before under

deterministic channel setup [19, 17, 20] and has been applied for K-user interference channel

as well [78]. However, one major issue with real interference alignment is that it is impossible

to obtain channel gains with infinity resolution. In other words, the channel information must

be quantized before it can be used. In such a sense, real interference alignment is not practical

as well.
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3.1.3 Ergodic interference alignment

Ergodic interference alignment [45] is different from the previously mentioned alignment

schemes, which are all used to achieve the DoF in high SNR region. Ergodic interference

alignment is proposed to achieve a rate that is proportional to half of a single user rate for a

multi-user interference channel, i.e., it is an alignment scheme for any SNR. It uses the fact

that for many channel distributions, the channel state can be partitioned into complimentary

pairings such that alignment can be performed using these complimentary states. However, the

limitation is that it requires the symmetry in the distribution of channel coefficients therefore

it cannot been applied for many fading channels. For example, due to the mean components

in Rician fading, it is impossible to cancel out the interference via pairing.

3.1.4 Blind interference alignment

The blind interference alignment method is proposed to deal with the scenarios where

the transmitters have no CSI. The original concept was proposed in [48], where the authors

show that interference alignment is still possible when there is no CSIT but the transmitters

know the correlation structure of the channel. Using the staggered fading model [48], the

transmitters can jointly construct beamforming matrices such that interference can be aligned.

If the channels from a transmitter to its dedicated receiver (the communication link) and the

other receivers (interference links) change at different time then this transmitter can send out

messages when the communication link changes while interference links remains unchanged.

From its own receiver’s perspective, the signals are from different directions. However, for

those receivers which treat its signal as interference, the interference is coming from the same

direction. This property can be used to design alignment schemes such that the interference in

the subsequent transmission is aligned to previous transmission. Although channel correlation

structure can be used to do interference alignment, the channel coefficients may change slowly

over time and it is difficult for transmitters and receivers to know the exact time instant

that channel changes. In addition, the interference using staggered fading channel can not be

naturally extended to general cases.
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The idea was further considered in [49] in MISO broadcast channel, where the receivers are

assumed to have reconfigurable antennas, such that the channel can be changed manually. It is

shown that with such an ability, the total DoF of a MISO broadcast channel is the same when

there is perfect CSIT. In addition, unlike the perfect CSIT case where asymptotic interference

alignment is used to achieve the total DoF, only finite number of channel extension is needed

with reconfigurable antenna. The reconfigurable antenna is promising as it remove the CSI

requirement, and can be used for any SNR, but requires higher hardware complexity.

3.1.5 Retrospective interference alignment

Blind interference alignment was proposed to deal with the case where there is no CSIT.

However, the no CSIT assumption is too pessimistic in practical system. Transmitters can still

receive some channel state information by using long coding block to combat error events in the

feedback link. Therefore the CSI is usually out-dated. For point-to-point memoryless channel,

Shannon showed that feedback does not increase channel capacity [79]. However, this is not

the case in multi-user communication channels. Recently, the authors in [50, 51] investigated

the MISO broadcast channel with delayed CSIT, where the CSI is available to transmitter

accurately but with one symbol time delay. They showed that the delayed CSIT can still be

very useful to increase the DoF of MISO broadcast channel, which is opposite to the common

conjecture that outdated CSIT is not useful at all. The key is to construct precoding matrices

at one time instant by only using the channel state in previous time instants. Such a scheme

is termed as retrospective interference alignment in [52] and is extended to three-user MIMO

interference channel and MIMO X channel as well.

3.2 Interference alignment in three-user SISO IC

In this section, we will briefly review the classic asymptotic interference alignment scheme

that was proposed in [39]. To avoid reproduction, we only use a simple three-user SISO

interference channel as an example, which is sufficient to reveal the key ideas of interference

alignment.
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Figure 3.1 System model of three-user SISO interference channel

Consider a three-user interference channel where each transmitter or receiver has only one

antenna. The system model can be given as

y1(t) = h11(t)x1(t) + h12(t)x2(t) + h13(t)x3(t) + z1(t), (3.1)

y2(t) = h21(t)x1(t) + h22(t)x2(t) + h23(t)x3(t) + z2(t), (3.2)

y3(t) = h31(t)x1(t) + h32(t)x2(t) + h33(t)x3(t) + z3(t). (3.3)

Here the channel coherent time L is assume to be 1, and all the channel coefficients are

assumed to be perfectly known at transmitter, i.e., the transmitters have global channel state

information. On the other hand, the receivers only have the channel coefficients that corre-

sponding to the received useful signal and interference. Fig. 3.1 shows the system model.

In [39], the authors proposed to do interference alignment over time expansion channel of

τ slots, which can be given as

ỹ1 = H̃11x̃1 + H̃12x̃2 + H̃13x̃3 + z̃1, (3.4)

ỹ2 = H̃21x̃1 + H̃22x̃2 + H̃23x̃3 + z̃2, (3.5)

ỹ3 = H̃31x̃1 + H̃32x̃2 + H̃33x̃3 + z̃3. (3.6)
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Notice that the original channel is scalar channel, therefore the time expanded channel matrix

H̃ji is a diagonal matrix. Apparently, all the receivers have τ signal dimensions over time

expanded channel. If one transmitter send out signal over all the τ dimensions, its signal will

fill out all the dimensions at the other two receivers, which is not total DoF optimal. To

achieve full DoF of this channel we need to do beamforming over time expanded channel and

interference alignment.

Let τ = 2l+1, where l is a non-negative integer. Assume that the message from transmitter

one is encoded into l +1 streams w
(i)
1 , 1 ≤ i ≤ l +1, where each stream is transmitted by using

a length τ beamforming vector ṽ
(i)
1 , 1 ≤ i ≤ l + 1. Therefore, signal x̃1 can be given as

x̃1 =
l+1∑

i=1

w
(i)
1 ṽ

(i)
1 (3.7)

=
[
ṽ

(1)
1 ṽ

(2)
1 · · · ṽ

(l+1)
1

]

︸ ︷︷ ︸
Ṽ 1




w
(1)
1

w
(2)
1

...

w
(l+1)
1




︸ ︷︷ ︸
w̃1

. (3.8)

Similarly, assuming that transmitter 2 and 3 send only l streams, the corresponding beam-

forming matrices Ṽ i, i = 2, 3 and the message vectors w̃i, i = 2, 3 can be defined accordingly.

We can see that if Ṽ i’s are randomly generated, the signal and interference will be overlap-

ping with each other. For example, at receiver 1, the interference space has dimensionality 2l

as matrix [H̃12Ṽ 2, H̃13Ṽ 3] has full column rank 2l. Therefore, it is impossible for transmitter

1 sending l + 1 interference-free streams.

The key idea of interference alignment is to construct the beamforming matrices in a smart

way such that the interference from different transmitters are aligned together to occupy less

signal dimension.
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To achieve the alignment, the authors of [39] choose the following conditions

H̃12Ṽ 2 = H̃13Ṽ 3, (3.9)

H̃23Ṽ 3 ≺ H̃21Ṽ 1, (3.10)

H̃32Ṽ 2 ≺ H̃31Ṽ 1. (3.11)

They further show that the conditions in (3.9)–(3.11) are equivalent to the following

H̃
−1
21 H̃23Ṽ 3︸ ︷︷ ︸

B

= H̃
−1
21 H̃23H̃

−1
12 H̃13H̃

−1
32 H̃31︸ ︷︷ ︸

T

H̃
−1
31 H̃32Ṽ 2︸ ︷︷ ︸

C

, (3.12)

B ≺ Ṽ 1, (3.13)

C ≺ Ṽ 1. (3.14)

Thanks to the diagonal structure of channel matrices, T is a diagonal matrix as well. And the

beamforming matrices can be designed as follows. First, choose

Ṽ 1 = [1τ ,T1τ , · · · ,T l1τ ], (3.15)

where 1τ is a length τ all one vector. In order to satisfy (3.12)–(3.14) simultaneously, one can

choose

C = [1τ ,T1τ , · · · ,T l−11τ ], (3.16)

B = [T1τ ,T
21τ , · · · ,T l1τ ]. (3.17)

Apparently, any column from C multiplied by T will be a column of B and they are sub

matrices of Ṽ 1. Hence, we have

Ṽ 2 = H̃
−1
32 H̃31[1τ ,T1τ , · · · ,T l−11τ ], (3.18)

Ṽ 3 = H̃
−1
23 H̃21[T1τ ,T

21τ , · · · ,T l1τ ]. (3.19)

To guarantee each receiver can decode its own message, it is necessary to verify that the

signal space and interference space are independent at all receivers, this is shown in [39] using

two facts: 1) Channel coefficients are randomly drawn, and 2) The beamforming matrices have

Vandermonde structure
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Figure 3.2 Alignment relationship of three user SISO interference channel.

The achievable DoF point is the following

(d1, d2, d3) =
(

l + 1
2l + 1

,
l

2l + 1
,

l

2l + 1

)
(3.20)

When l →∞,

(d1, d2, d3) =
(

1
2
,
1
2
,
1
2

)
(3.21)

The alignment relationship is shown in Fig. 3.2.

3.3 Summary

In this chapter, we discussed some well-known interference alignment schemes and show

their advantages and limitations. In addition, we reviewed the classic asymptotic interference

alignment by using a simple example to highlight the key concept. As we pointed before, the

interference alignment scheme heavily depends on the channel model and different applications.

In the following two chapters, we shall investigate the DoF region of two-user and multi-user

systems by exploring different alignment methods.
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CHAPTER 4. DOF REGION OF TWO-USER FULL INTERFERENCE

CHANNEL AND Z INTERFERENCE CHANNEL WITH

RECONFIGURABLE ANTENNAS

4.1 Introduction

Two-user FIC has been studied in [35, 54, 57], where the DoF region with or without CSIT

is solved when channel is isotropic block fading. However, it is also shown that there exist

potential DoF gain by exploring the channel correlation structure [48]. In this chapter, we

investigate the benefit of reconfigurable antennas in two-user FIC and ZIC.

Specifically, we obtain the DoF regions for the cases of:

1. ZIC with CSIT. We show that zero forcing is sufficient for achieving the DoF region in

this case (Theorem 1).

2. ZIC and FIC when transmitter one has a number S of antennas modes S ≥ N1 (Theo-

rems 2 and 3). Increasing S beyond N1 does not bring more gains in DoF.

3. ZIC and FIC when M1 ≤ S < N1, in which case each additional antenna mode brings

an incremental gain on the DoF region (Theorem 4).

We present joint beamforming and nulling schemes to achieve the DoF region in all cases.

When reconfigurable antennas are used, our proposed schemes have an interesting space-

frequency coding explanation.

The rest of the chapter is organized as follows. We first present the system model in

Section 4.2. Known results on the DoF region of two-user MIMO FIC are also briefly reviewed.

The DoF region of ZIC with CSIT is discussed in Section 4.3. The DoF regions of ZIC and
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FIC without CSIT when there are enough antenna modes are investigated in Section 4.4.

When there are not enough modes, the DoF region is given in Section 4.5. Finally, Section 6.5

concludes this chapter.

4.2 System model and known results

4.2.1 System model

As there are only two transmit-receive pairs in the system and the number of antennas are

not the same, the system is termed as an (M1, N1,M2, N2) system, which can be described as

y1(t) = H11(t)x1(t) + H12(t)x2(t) + z1(t), (4.1)

y2(t) = H21(t)x1(t) + H22(t)x2(t) + z2(t). (4.2)

Assume the CSIR is always available. We would like to study the DoF regions of MIMO

two-user FIC and ZIC with or without CSIT. The DoF region is defined as follows:

D :=
{

(d1, d2) ∈ R2
+ : ∃(R1(P ), R2(P )) ∈ C(P ), such that di = lim

P→∞
Ri(P )
log(P )

, i = 1, 2
}

.

(4.3)

For the no CSIT case, we further assume that one transmitter is equipped with reconfig-

urable antennas and the channel between different modes to the receivers are isotropic fading.

As we stated before, by switching to different modes, the effective channel for the whole block

is not isotropic fading and not i.i.d. over the time slots within the block.

One may view our model approximately as a transition from an effective channel where

all the links have exactly the same coherent time as in [57] to an effective channel where the

links do not have the same coherent time [48]. However, there are two important distinctions

between antenna mode switching and variation of channel coherence time: i) Antenna switching

can be initiated at will at the transmitter, whereas channel coherence structure is in general

not controllable. ii) The resulting equivalent channel from antenna mode switching is not

“staggered” [48], so methods therein do not apply here. Similar to [49], we use reconfigurable

antennas to explore multiplexing gain other than diversity gain.
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4.2.2 Known results on FIC

We first present some known results on DoF region of MIMO full interference channel which

will be useful for developing our results.

The total degrees of freedom of two-user MIMO full interference channel with CSIT is

developed in [35, Theorem 2], which leads to the following DoF regions:

di ≤ min(Mi, Ni), i = 1, 2; (4.4)

d1 + d2 ≤ min(max(N1,M2),max(M1, N2), N1 + N2,M1 + M2). (4.5)

An outer bound of degrees of freedom region of two-user MIMO full interference channel

without CSIT is as follows [56, Theorem 1]:

di ≤ min(Mi, Ni), i = 1, 2; (4.6)

d1+
min(N1, N2,M2)

min(N2,M2)
d2 ≤ min(M1 + M2, N1); (4.7)

min(N1, N2,M1)
min(N1,M1)

d1+d2 ≤ min(M1 + M2, N2). (4.8)

Note that the same result is also given in [54], though in a less compact form.

It is shown in [54] that the outer bound given in (4.6)–(4.8) can be achieved by zero forcing

or time sharing except for the case M1 < N1 < min(M2, N2), for which it was not known how

to achieve

(d1, d2) =
(

M1,
min(M2, N2)(N1 −M1)

N1

)
(4.9)

in general. The cases when N1 > N2 can be converted by switching the user indices. It is

shown in [57] that when the channel is isotropic fading and i.i.d. over time, the outer bound

given in (4.6)–(4.8) is not tight: if N1 ≤ N2, the DoF region of FIC without CSIT can be given

as follows:

di ≤ min(Mi, Ni), i = 1, 2; (4.10)

d1+
min(N1,M2)− α

min(N2,M2)− α
(d2 − α) ≤ min(M1, N1). (4.11)
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where α = min(M1 + M2, N1) − min(M1, N1). In other words, (4.9) is not achievable when

M1 < N1 < min(M2, N2), as (4.11) is reduced to

d1 +
M1

min(M2, N2)− (N1 −M1)
d2 ≤ M1 +

M1(N1 −M1)
min(M2, N2)− (N1 −M1)

(4.12)

and the DoF pair (d1, d2) = (M1, N1 −M1) is the corner point of the DoF region.

4.3 Two-user MIMO ZIC with CSIT

In this section, we prove the following theorem.

Theorem 1 (ZIC with CSIT). The DoF region of a two-user MIMO Z interference channel

with CSIT is described by

di ≤ min(Mi, Ni), i = 1, 2; (4.13)

d1 + d2 ≤ min(max(N1,M2), N1 + N2,M1 + M2). (4.14)

Proof. We split the proof into the achievability and converse parts, as the following two lemmas.

The theorem can be proved by showing the regions given by Lemma 1 and Lemma 2 are the

same for all the cases.

Lemma 1 (Achievability part of Theorem 1). The following region of two-user MIMO ZIC

with CSIT is achievable:

di ≤ min(Mi, Ni), i = 1, 2; (4.15)

d1 + d2 ≤ min(N1,M1 + min(N2,M2))1(M2 < N1)

+ min(M2, N2 + min(N1,M1))1(M2 ≥ N1) (4.16)

where 1(·) is indicator function.

Proof. If M2 ≥ N1 and assume transmitter 1 sends d1 streams, transmitter 2 can send at most

M2 − N1 streams along the null space of H12 without interfering receiver 1. Transmitter 2

can also send at most N1 − d1 streams along the row space of H12. Therefore user 2 can

decode min((M2 − N1) + (N1 − d1), N2) streams without interfering receiver 1. If N1 ≥ M2
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and assume transmitter 2 sends d2 streams which interfere receiver 1, transmitter 1 can send

min(N1 − d2,M1) decodable streams to receiver 1. Combining these two cases, we have the

achievable DoF region shown in this lemma.

Lemma 2 (Conversepart of Theorem 1). The region given by (4.13) and (4.14) is a valid

outer bound for the two-user MIMO ZIC with CSIT.

Proof. It is obvious that adding antennas at the receiver will not shrink the DoF region. Hence,

we can add M1 antennas to receiver 2 resulting an (M1, N1,M2,M1 + N2) MIMO FIC, and

(4.14) follows from Corollary 1 in [35]. The outer bound of such a MIMO FIC is a valid outer

bound of an (M1, N1,M2, N2) MIMO ZIC. Combining the trivial upper bound on point-to-

point system, we have this lemma.

Based on Lemma 1, zero forcing at receiver is sufficient to achieve the DoF region of

ZIC when CSIT is available. The antenna mode switching ability is not needed in this case.

However, we shall see later that such an ability is important for the case when CSIT is absent.

4.4 Two-user MIMO ZIC and FIC without CSIT when number of modes

S ≥ N1

In this section, we describe the DoF regions of two-user ZIC and FIC without CSIT but

with transmitter side reconfigurable antennas. We deal with the case that S, the number of

antenna modes is at least equal to the N1. The case S < N1 will be dealt with in Section 4.5.

Based on the antenna number configuration, the achievability scheme of ZIC and FIC with-

out CSIT can be divided into two cases. In the first case, no reconfigurable antenna is needed

to achieve an DoF outer bound — reconfigurable antennas are not helpful (Section 4.4.2). In

the second case, the outer bound can be achieved with enough transmit side antenna modes

(Section 4.4.3): reconfigurable antennas enlarges the DoF region. Our main results in this

section are the following two theorems.
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Theorem 2 (ZIC with Enough Reconfigurable Antenna Modes). The DoF region of two-user

MIMO Z interference channel without CSIT is described by the following inequalities

di ≤ min(Mi, Ni), i = 1, 2; (4.17)

d1+
min(N1, N2,M2)

min(N2,M2)
d2≤min(M1+ M2, N1). (4.18)

if either one of the following is true:

C1) M1 < N1 < min(M2, N2) and transmitter one can switch among N1 antenna modes, or

C2) (M1, N1,M2, N2) do not satisfy the above condition.

The DoF region in Theorem 2 is shown in Fig. 4.1.

Theorem 3 (FIC with Enough Reconfigurable Antenna Modes). The DoF region of two-user

MIMO full interference channel without CSIT is described by the inequalities (4.6)–(4.8) if any

one of the following is true:

C1) M1 < N1 < min(M2, N2) and transmitter one can switch among N1 antenna modes, or

C2) M2 < N2 < min(M1, N1) and transmitter two can switch among N2 antenna modes, or

C3) (M1, N1,M2, N2) are not one of the two above cases.

4.4.1 Converse part

We first prove the converse part of the two theorems.

Lemma 3 (Transmit antenna mode switching cannot change DoF). For any channel with

non-zero DoF, using reconfigurable antennas with finite number of modes at transmitter would

not change the DoF.

Proof. Let x and y be the channel input and output, respectively. Let A be the index of

transmit antenna modes. We can view the receiver as receiving both x and A. We have

I(y;x, A) = I(y;A) + I(y;x|A) (4.19)

≤ H(A) + I(y;x|A) (4.20)

≤ o(log(P )) + I(y;x|A) (4.21)
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On the other hand,

I(y;x, A) ≥ I(y;x|A) (4.22)

Therefore,

I(y;x, A) = I(y;x|A) + o(log(P )) (4.23)

Hence, transmit mode switching will not affect the DoF of the channel even it is not available

to the receiver.

In the following of this chapter, we assume that the transmit antenna mode switching

patten is known to the receiver for simplicity according to Lemma 3.

Lemma 4 (Converse part of Theorem 3). The outer bound of DoF region of two-user MIMO

full interference channel given in (4.6)–(4.8) is still valid when either or both transmitters are

using antenna mode switching.

Proof. The outer bound (4.7) has been derived based on the assumption that the rows of H12

and those of H22 are statistically equivalent [54, 56]. Similarly, the outer bound (4.8) has

been derived based on the assumption that the rows of H11 and those of H21 are statistically

equivalent. These assumptions are not affected by antenna mode switching at either or both

transmitters. Hence, the DoF outer bound is still valid.

Lemma 5 (Converse part of Theorem 2). The outer bound of degrees of freedom region of

two-user MIMO Z interference channel without CSIT can be given as follows when transmitter

one has the antenna mode switching ability

di ≤ min(Mi, Ni), i = 1, 2; (4.24)

d1+
min(N1, N2,M2)

min(N2,M2)
d2≤min(M1+ M2, N1). (4.25)

Proof. This is the direct result of [56, Theorem 1] as in (4.6)–(4.8), by noticing that there is

no interference from transmitter 1 to receiver 2 hence (4.8) is not longer needed. The antenna

switching at transmitter one does not affect the upper bound, for the same reason stated in

Lemma 4.
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Figure 4.1 DoF region of two-user MIMO ZIC without CSIT when number
of antenna modes S ≥ N1. Figures (a)–(e) are for the case
N1 ≤ N2; Figures (f)–(h) are for the case N1 ≥ N2.
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4.4.2 Achievability: when antenna mode switching is not needed

In this section, we prove the achievability part for Case C2) of Theorem 2 and Case C3) of

Theorem 3. Achievability for the remaining cases are left to Section 4.4.3.

Lemma 6. For the two-user MIMO Z interference channel without CSIT, when N1 ≥ N2,

(4.25) is achievable by zero forcing.

Proof. When N1 ≥ N2, the corresponding outer regions are shown in Fig. 4.1 (f)–(h). Noticing

that (4.25) is reduced to d1 + d2 ≤ min(M1 + M2, N1), zero forcing is sufficient to achieve the

outer bound.

Lemma 7. When CSIT is absent, the DoF outer region given by Lemma 5 of a two-user

MIMO (M1, N1,M2, N2) ZIC is the same as that of an (M1, N1,min(M2, N2),min(M2, N2))

ZIC.

Proof. We give the proof case by case. It is trivial that when M2 ≤ N2 reducing the number of

antennas at receiver 2 to M2 will not shrink the DoF region. When M2 > N2, we can further

consider two sub-cases: N2 ≥ N1 and N2 < N1.

1. When M2 > N2 ≥ N1, corresponding to Fig. 4.1 (d) and (e), the DoF bound (4.25)

becomes d1
N1

+ d2
N2

≤ 1. Hence the DoF outer region is the same as an (M1, N1, N2, N2)

ZIC.

2. When M2 > N2 and N2 < N1, the DoF bound (4.25) becomes d1 + d2 ≤ min(M1 +

M2, N1). Hence, if M1 ≥ N1−N2, which implies M1 +min(M2, N2) ≥ N1, the DoF outer

region is a pentagon or a tetragon; see Fig. 4.1 (g) and (h). Otherwise, it is a square,

see Fig. 4.1 (f). One can show that the region is the same as that of an (M1, N1, N2, N2)

ZIC.

Hence, the lemma holds.

We also have the following lemma regarding the relationship between DoF regions of ZIC

and FIC.
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Lemma 8. When N1 ≤ N2, the MIMO ZIC and FIC have the same DoF regions. Any

encoding scheme that is DoF optimal for one channel is also DoF optimal for the other.

Proof. Any point in the FIC is also trivially achievable in the ZIC because user 2’s channel is

interference free. Conversely, any point achievable in the ZIC region, is also achievable in FIC.

This is based on the fact that the channels are statistically equivalent at both receivers. If

receiver 1 can decode user 1’s message, then receiver 2, having at least as many antennas, must

also be able to decode the same message. Receiver 2 can then subtract the decoded message,

which renders the resulting channel the same as in the ZIC.

Due to Lemma 8, we can translate all achievability schemes from FIC to ZIC and vice

versa when N1 ≤ N2. Therefore the achievability schemes in [54] for FIC when N1 ≤ N2 and

M1 ≥ N1 can be used for ZIC. Therefore, the achievability part for Case C2) of Theorem 2 is

complete.

For the FIC, the achievability for the case N1 ≤ N2, except when M1 < N1 < min(M2, N2),

is shown in [54]. When N1 ≥ N2, we can swap the indices of the two users, so that except for

the Cases C1) and C2) the achievability scheme is known for FIC.

4.4.3 Achievability: with antenna mode switching when S ≥ M1N1

In this subsection, we prove a weaker version of the achievability for Case C1) of Theorem 2

and Cases C1) and C2) of Theorem 3. Namely, we assume that the number of antenna modes

available is S ≥ M1N1. The scheme is simpler in this case, and the achievability scheme for

the case S = N1 will be built upon this case.

Based on Lemma 7 and Lemma 8, we only consider the two-user MIMO ZIC with M1 <

N1 < M2 = N2 to prove the Cases C1) for both theorems. Case C2) of Theorem 3 is the Case

of C1) with user indices swapped. Therefore, we want to show that the following DoF pair is

achievable for ZIC with S1 = M1N1 modes:

(d1, d2) =
(

M1,
M2(N1 −M1)

N1

)
. (4.26)
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We first notice that this point cannot be achieved by zero forcing over one time instant.

This is because using zero forcing if transmitter 1 sends M1 streams, transmitter 2 can only

send N1−M1 streams without interfering receiver 1. If transmitter 2 sends more streams, the

desired signal and interference are not separable at receiver 1 as transmitter 2 does not know

channel state information so it cannot send streams along the null space of H12. A simple

example is the (1, 2, 3, 3) case, where the outer bound gives us (d1, d2) = (1, 1.5), which is

not achievable via zero forcing over one time slot. We make the assumption that the channel

coherent time L is at least N1. Therefore, it is sufficient to show that (M1N1,M2(N1 −M1))

streams can be achieved in N1 time slots.

We first develop the beamforming and nulling design by assuming that there are N1M1

antenna modes available at transmitter 1 such that it can use different antenna modes in

different slots to create channel variation. We will further show that the resultant beamforming

and nulling design still work even if there are only N1 modes available.

The time expansion channel between transmitter 1 and receiver 1 in N1 time slots is

H̃11=




H11(1) 0 0 0

0 H11(2) 0 0
...

...
. . .

...

0 0 0 H11(N1)




N2
1×N1M1

and the channel between transmitter 2 and receiver 1 is

H̃12 = IN1 ⊗H12(1) (4.27)

as transmitter 2 does not create channel variation. We will use precoding at transmitter 2 only

and nulling at receiver 1 only. Let P̃ be the transmit beamforming matrix at transmitter 2

and Q̃ be the nulling matrix at receiver 1. We propose to use the following structures for them

P̃ M2N1×M2(N1−M1) = P N1×(N1−M1) ⊗ IM2 (4.28)

Q̃M1N1×N2
1

= QM1×N1
⊗ IN1 . (4.29)

The received signal at receiver 1 can be written as

ỹ1 = H̃11x̃1 + H̃12P̃ x̃2 + z̃1 (4.30)
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where x̃1 is a length M1N1 vector, and x̃2 is a length M2(N1 − M1) vector. After applying

nulling matrix Q̃, we have

Q̃ỹ1 = Q̃H̃11︸ ︷︷ ︸
Ã

x̃1 + Q̃H̃12P̃︸ ︷︷ ︸
B̃

x̃2 + Q̃z̃1. (4.31)

To achieve the degrees of freedom (M1N1,M2(N1−M1)) for both users, it is sufficient to design

our P̃ and Q̃ to satisfy the following conditions simultaneously

1. rank(Ã) = M1N1,

2. rank(P̃ ) = M2(N1 −M1),

3. B̃ = 0.

The second condition can be easily satisfied. Because rank(P̃ ) = rank(P )rank(IM2), we only

need to design P such that rank(P ) = N1 −M1. As to the third condition, notice that

B̃ = (Q⊗ IN1)(IN1 ⊗H12(1))(P ⊗ IM2)

= (QIN1P )⊗ (IN1H12(1)IM2)

= (QP )⊗H12(1).

It is therefore sufficient (and also necessary) to have QP = 0. Then the key is to find a Q

such that the equivalent channel of user 1 after nulling

Ã = (Q⊗ IN1)H̃11 (4.32)

has full rank M1N1 with probability 1. The matrix Ã is of size M1N1 ×M1N1 and has the

following structure

Ã=




q11H11(1) q12H11(2) · · · q1N1H11(N1)

q21H11(1) q12H11(2) · · · q2N1H11(N1)
...

...
. . .

...

qM11H11(1) qM12H11(2) · · · qM1N1H11(N1)




.

To show that Ã has full rank, we need the following lemma, which is known before, and a

proof of it can be found in e.g., [80].
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Lemma 9. [80, Lemma 2] Consider an analytic function h(x) of several variables x =

[x1, . . . , xn]T ∈ Cn. If h is nontrivial in the sense that there exists x0 ∈ Cn such that h(x0) 6= 0,

then the zero set of f(x) Z := {x ∈ Cn|h(x) = 0} is of measure (Lebesgue measure in Cn)

zero.

Because the determinant of Ã is an analytic polynomial function of elements of H11(t), t =

1, . . . , N1, we only need to find a specific pair of Q and H11(t), t = 1, . . . , N1, such that Ã is

full rank. We propose the following:

Q = [VN1(1, ωN1 , . . . , ω
M1−1
N1

)]T , (4.33)

where ωN1 := exp(−j2π/N1).

Let ω := exp(−j2π/N2
1 ). Take the realizations of H11(t), t = 1, . . . , N1, as

H11(t) = VN1(ω
t−1, ωN1+t−1, . . . , ω(M1−1)N1+t−1). (4.34)

It can be verified that for such choices of Q and H11(t), Ã is a Vandermonde matrix:

Ã = VM1N1(1, ωN1 , . . . , ω(M1−1)N1 , ω1, ωN1+1, . . . ,ω(M1−1)N1+1,

. . . , ωN1−1, ω2N1−1, . . . , ωM1N1−1),

hence of full rank. We also notice that Ã is a leading principal minor of a permuted fast

Fourier transform (FFT) matrix with size N2
1 ×N2

1 . The permutation is as follows: Index the

columns of an FFT matrix 0, 1, . . . , N2
1 − 1, and then permute them in an order shown below:

(0, N1, 2N1, . . . , (M1 − 1)N1), (1, N1 + 1, 2N1 + 1, . . . , (M1 − 1)N1 + 1), ...

Based on Lemma 9, if we choose the nulling matrix using Q as specified in (4.33), Ã has

full rank almost surely. One choice of the corresponding P matrix with respect to (4.33) is the

following

P = VN1(ω
−M1
N1

, ω
−(M1+1)
N1

, . . . , ω
−(N1−1)
N1

), (4.35)

which is orthogonal to Q. This completes the achievability part under conditions in Case C1)

of Theorem 2 and Cases C1) and C2) of Theorem 3, but with S ≥ M1N1.
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4.4.4 Achievability: with antenna mode switching when S = N1

Assuming there are N1 modes available at transmitter 1 and denote these channel vectors

between receive antennas of user 1 and the ith mode as hi, 1 ≤ i ≤ N1 and let ĤN1×N1 =

[h1,h2, . . . ,hN1 ]. We choose the antenna modes to be switched in the following way:

H11(1) = [h1,h2, . . . ,hM1 ], (4.36)

H11(2) = [h2,h3, . . . ,hM1+1], (4.37)

...

H11(N1) = [hN1 ,h1, . . . ,hM1−1]. (4.38)

We want to show that under this switching pattern, the equivalent channel Ã in (4.32) between

transmitter one and receiver one after nulling, is still full rank. To show this, indexing the

columns of Ã in (4.32) as 0, 1, . . . , N1M1− 1, we then permute and group the columns of Ã in

the following way:

(0,M1, 2M1, . . . , (M1 − 1)N1), (1,M1 + 1, 2M1 + 1, . . . , (M1 − 1)N1 + 1), ...

Denote the permutation result as Ã
′
and it can be expressed as

Ã
′
=




Ĥ Ĥ · · · Ĥ

GĤ ω−1
N1

GĤ · · · ω−M1
N1

GĤ

...
...

. . .
...

GM1Ĥ (ω−1
N1

G)M1Ĥ · · · (ω−M1
N1

G)M1Ĥ




,

where G is a size N1 ×N1 diagonal matrix and can be expressed as

G = diag(1, ωN1 , ω
2
N1

, . . . , ωN1−1
N1

). (4.39)

Notice that Ã
′
= R(IM1 ⊗ Ĥ), where

R =




IN1 IN1 · · · IN1

G ω−1
N1

G · · · ω−M1
N1

G

...
...

. . .
...

GM1 (ω−1
N1

G)M1 · · · (ω−M1
N1

G)M1




.
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Recall ωN1 = exp(−j2π/N1). To show Ã is full rank, it is necessary to show R is full rank as

IM1⊗Ĥ is full rank with probability 1. It can be verified that via row and column permutations

R can be changed to a block diagonal matrix with the ith block being

VM1(ω
i
N1

, ωi−1
N1

, · · · , ωi−M1+1
N1

), (4.40)

which is full rank due to Vandermonde structure. Hence R is full rank. It follows that A is

full rank with probability 1. This completes the achievability part under conditions in Case

C1) of Theorem 2 and Cases C1) and C2) of Theorem 3 for S = N1.

4.4.5 Discussion

4.4.5.1 Frequency domain interpretation

We note that the matrix [Q†, P ] is an inverse FFT (IFFT) matrix in our construction

(4.28), (4.29), (4.33) and (4.35). This observation yields an interesting frequency domain

interpretation of our construction. The signal of user 2 is transmitted over frequencies cor-

responding to the last N1 − M1 columns of an IFFT matrix, whereas the first user’s signal

is transmitted on all frequencies. Due to the antenna mode switching at transmitter 1, the

channel between transmitter 1 and receiver 1 is now time-varying and we manually introduce

frequency spread. User 1’s signal is spread from one frequency bin to all the frequencies while

user 2’s signal remains in the last N1 −M1 frequency bins. Therefore the signal in the first

M1 bins is interference free, which can be used to decode user 1’s message. The nulling matrix

applied at receiver 1 has a projection explanation as well. Left multiplying the left and right

hand sides of (4.31) with Q̃
†

yields

Q̃
†
Q̃ỹ1 = Q̃

†
Q̃H̃11x̃1 + Q̃

†
Qz̃1

= ((Q†Q)⊗ IN1)(H̃11x̃1 + z̃1),

where Q†Q is the frequency domain projection matrix. We can see that the signal of user 1 is

projected from N1 frequencies to the first M1 frequencies.
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4.4.5.2 The loss of DoF due to lack of CSIT

In two-user MIMO Z interference channel without CSIT, losing CSIT will not shrink degrees

of freedom region if M2 ≤ N1 or M2 > N1 ≥ N2 + M1. For all the other cases, the degrees of

freedom region is strictly smaller when comparing with the CSIT case.

This observation can be verified case by case. Notice that it is already shown in [54,

Theorem 2] that when M2 ≤ N1 ≤ N2 absence of CSIT does not reduce DoF region in two-

user MIMO FIC. Because MIMO FIC and ZIC has the same DoF region when N1 ≤ N2. We

only need to consider the sub cases when N1 > N2, corresponding to (f)–(h) in Fig. 4.1.

1. If M2 < N1 and N1 > N2, the total DoF of MIMO ZIC is upper bounded by N1 due to

(4.14), so the DoF region remains the same if CSIT is absent.

2. If M2 > N1 > N2, the DoF region of MIMO ZIC without CSIT is a square only when

M1 + N2 ≤ N1, same as that of ZIC with CSIT. Otherwise, the maximum total DoF of

ZIC with CSIT is min(M2, N1 + N2,min(M1, N1) + N2), strictly larger than N1 which

is the maximum total DoF when CSIT is absent, hence loss of CSIT reduces the DoF

region.

4.4.5.3 Alternative construction when N1/M1 = β ∈ Z

When N1/M1 = β ∈ Z, instead of using the Q given in (4.33) we can use the following

QM1×N1
= IM1 ⊗1T

β . We need to show that this Q matrix will lead to a full rank Ã. This can

be achieved by choosing H̃11 such that it can be decomposed as H̃11 = IM1 ⊗ H̃
′
11, where

H̃
′
11=




H11(1) 0 . . . 0

0 H11(2) . . . 0
...

...
. . .

...

0 0 . . . H11(β)




N1β×N1

.

For this H̃11

Ã = (IM1 ⊗ 1T
β ⊗ IN1)(IM1 ⊗ H̃

′
11)

= IM1 ⊗ ((1T
β ⊗ IN1)H̃

′
11),
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which has full rank. For this choice of Q, we only use βM1 = N1 antenna modes in N1 time

slots.

Therefore, for the two-user MIMO ZIC and FIC when M1 < N1 < min(M2, N2) and

N1/M1 = β ∈ Z, β fold time expansion is enough to achieve the DoF region. We remark that

this can be viewed as the generalization of the case we discussed in Section 4.4.3 for N1 = β

and M1 = 1. In fact 1T
β is the nulling matrix Q given in (4.33) when N1 = β, M1 = 1.

4.4.5.4 Successive decoding in ZIC

For the two-user MIMO FIC when M1 < N1 < min(M2, N2) and CSIT is absent, we

need block decoding at both receivers in general, which introduces decoding delay. Successive

interference cancellation decoder can be used at receiver 2 to reduce decoding delay. Taking

the case N1/M1 = β ∈ Z as an example, we can use β fold time expansion and choose Q = 1T
β .

The corresponding P matrix is not necessary to be the last β − 1 columns of an β × β FFT

matrix. The following P matrix still satisfies the design constraint

P β×(β−1) =




Iβ−1

1T
β−1


 . (4.41)

Here, P has a nice structure. Every stream of user 2 can be decoded immediately as they are

interference free. For other cases where M1 cannot divide N1, we can still find a Q, P pair

through numerical simulation such that the upper diagonal parts of P are all zeros and contain

small number of nonzero entries. Such a beamforming matrix can guarantee the immediate

decoding of user 2’s signal as the interference only comes from the streams decoded already.

4.5 Two-user MIMO ZIC and FIC without CSIT when number of modes

S < N1

In this section, we will present our result for the S < N1 case. The main result of this

section is the following theorem.

Theorem 4. When M1 < N1 < min(M2, N2) and the antennas of transmitter 1 can be

switched among S antenna modes, where S < N1, the DoF region of two-user MIMO ZIC and
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FIC without CSIT is given by the following inequalities

di ≤ min(Mi, Ni), i = 1, 2; (4.42)

d1 +
S

min(M2, N2)− (N1 −K)
d2 ≤ M1 +

S(N1 −M1) + (min(M2, N2)−N1)(S −M1)
min(M2, N2)− (N1 − S)

(4.43)

The DoF region of FIC for M2 < N2 < min(M1, N1) can be obtained by switching the two

user indices.

The method of proof is heavily based on that in [57] and we list the lemmas therein in

Section 4.7 as an appendix. Some notation that is used in this section are the following.

Recall that the channel coherent time is L, we simply consider time expanded signal over L

time slots and let t ∈ [1, L] be the index of the slot within one block. In addition, for a

time expanded vector x̃, we use x̃n or {x̃}n to denote a sequence of n successive blocks of x̃:

x̃n = vec(x(1),x(2), . . . ,x(nL)). Furthermore, x(t)n is the sequence of x(t) which contains

all the vector x of the tth slot of all n blocks: x(t)n = vec(x(t),x(t + L), . . . ,x(t + (n− 1)L)).

Similar notation is defined for matrices as well. We use H denotes (H11,H12,H21,H22),

hence H̃
n

denotes all the channel matrices over n blocks. In addition, for a random vector x,

xG is a corresponding CSCG vector that has the same covariance matrix as x.

4.5.1 The converse part

We prove the converse part of Theorem 4 in the following. Recall that for M1 < N1 <

min(M2, N2), the proof is equivalent for both FIC and ZIC. We will only show the proof for

ZIC. To make the proof self-contained, we will go through some similar steps as in [57], but

avoiding details.

The converse is developed based on blocking for every L slots. In each block, the channel

H12,H22 stay the same with the decomposition H12 = W 12Λ12V
†
12 and H22 = W 22Λ22V

†
22,

whereas H11 is time-varying among L slots due to antenna mode switching at transmitter 1.

Transmitter 1 has S modes with S < N1 and it can adopt arbitrary switching pattern. Let H11

be an N1×N1 full rank random matrix such that H11 = [h1,h2, · · · ,hN1 ] and hi, 1 ≤ i ≤ S is
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the random vector channel between the ith antenna mode and receive antennas of user 1. We

introduce the fictitious vectors {hi, S + 1 ≤ i ≤ N1} to simplify the proof. We assume H11 is

isotropic fading and i.i.d. over blocks of length L each, where L naturally satisfy L ≥ dS/M1e.
We denote the decomposition of H11 as W 11Λ11V

†
11.

Furthermore, let E(t) of size N1 ×M1 denote the antenna mode selection matrix for time

t. Let em, 1 ≤ m ≤ N1 be the mth column of IN1 . Let i(t) denote the mode index selected by

antenna i at time t. Then the ith column of E(t) is ei(t). We have H11(t) = H11E(t).

At receiver 1, from Fano’s inequality, we have

nLR1 − δnL ≤ I(ỹn
1 ; x̃n

1 |H̃
n
). (4.44)

where δnL → 0 as n →∞. Denote

r̃ = H̃11x̃1G + H̃
†
12x̃2 + z̃1 (4.45)

r̃1 = W̃
†
12H̃11x̃1G + Ṽ

†
12x̃2 + ñ1 (4.46)

where ñ1 = W̃
†
12z̃1. Using Lemma 13, which says that Gaussian input can reduce the mutual

information by at most an o(log(P )) quantity, and two uses of chain rule we have

nLR1 − n o(log(P ))

≤ I(r̃n;xn
1G|H̃

n
) (4.47)

= I
(
r̃n;xn

1G|x̃n
2 , H̃

n
)

+ I(r̃n; x̃n
2 |H̃

n
)− I

(
{H̃†

12x̃2 + z̃1}n; x̃n
2 |H̃

n
)

. (4.48)

Using Lemma 11, we have

I
(
{H̃†

12x̃2 + z̃1}n; x̃n
2 |H̃

n
)

= I
(
{W̃ 12Λ̃12Ṽ

†
12x̃2 + z̃1}n; x̃n

2 |H̃
n
)

(4.49)

= I
(
{Λ̃12Ṽ

†
12x̃2 + ñ1}n; x̃n

2 |H̃
n
)

(4.50)

≥ I
(
{Ṽ †

12x̃2 + ñ1}n; x̃n
2 |H̃

n
)
− n o(log(P )), (4.51)

and

I(r̃n; x̃n
2 |H̃

n
) = I

(
{W̃ †

12H̃11x̃1G + Λ̃12Ṽ
†
12x̃2 + ñ1}n; x̃n

2 |H̃
n
)

(4.52)

≤ I
(
r̃n

1 ; x̃n
2 |H̃

n
)

+ n o(log(P )). (4.53)
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Hence R1 can be further bounded as

nLR1 − n o(log(P ))

≤ I
(
r̃n; x̃n

1G|x̃n
2 , H̃

n
)

+ I(r̃n
1 ; x̃n

2 |H̃
n
)− I

(
{Ṽ †

12x̃2 + ñ1}n; x̃n
2 |H̃

n
)

. (4.54)

As to receiver 2, using Fano’s inequality and Lemma 11, we have

nLR2 − δnL ≤ I(ỹn
2 ; x̃n

2 |H̃
n
) (4.55)

= I
(
{W̃ 22Λ̃22Ṽ

†
22x̃2 + z̃2}n; x̃n

2 |H̃
n
)

(4.56)

≤ I
(
{Ṽ †

22x̃2 + ñ2}n; x̃n
2 |H̃

n
)

+ n o(log(P )), (4.57)

where ñ2 = W̃
†
22z̃2. Hence

nLR2 − n o(log(P )) ≤ I
(
r̃n

1 ; x̃n
2 |H̃

n
)
− I

(
r̃n

1 ; x̃n
2 |H̃

n
)

+ I
(
{Ṽ †

22x̃2 + ñ2}n; x̃n
2 |r̃n

1 , H̃
n
)

.

(4.58)

Notice that by using Gaussian input, the following inequalities hold

I
(
r̃1; x̃n

1G|x̃n
2 , H̃

n
)
≤ E log

(
det(ILN1 +

P

M1
H̃11H̃

†
11)

)
(4.59)

= nLM1 log(P ) + nLo(log(P )), (4.60)

I
(
r̃n

1 ; x̃n
2 |H̃

n
)
≤ nE log


det(ILN1 + P

M2
W̃ 12W̃

†
12 + P

M1
H̃11H̃

†
11)

det(ILN1 + P
M1

H̃11H̃
†
11)


 (4.61)

= nL(N1 −M1) log(P ) + nLo(log(P )). (4.62)

Then let n → ∞, multiply (4.58) with some positive scalar µ, add it with (4.54) and use

(4.60), (4.62), we have the following inequality

nL[R1 + uR2 − o(log(P ))] ≤ nLM1 log(P ) + µnL(N1 −M1) log(P ) + η, (4.63)

where µ is to be determined and

η =µI
(
{Ṽ †

22x̃2 + ñ2}n; x̃n
2 |H̃

n
)
−I

(
{Ṽ †

12x̃2 + ñ1}n; x̃n
2 |H̃

n
)
+(1−µ)I(r̃n

1 ; x̃n
2 |H̃

n
). (4.64)

Divide (4.63) by nL log(P ) and let P → ∞, we have the following inequality on the DoF of

two users

d1 + µd2 ≤ M1 + µ(N1 −M1) + λ, (4.65)
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where

λ =
1

nL
lim

P→∞
η

log(P )
.

Recall that r̃1 = W̃
†
12H̃11x̃1G + Ṽ

†
12x̃2 + ñ1 and H11(t) = H11E(t). We define

r̃2 = Λ̃
−1
11 W̃

†
11W̃ 12Ṽ

†
12x̃2 + Ṽ

†
11Ẽx̃1G + Λ̃

−1
11 W̃

†
11W̃ 12ñ1 (4.66)

r̃3 = W̃
†
11W̃ 12Ṽ

†
12x̃2 + Ṽ

†
11Ẽx̃1G + Λ̃

−1
11 W̃

†
11W̃ 12ñ1 (4.67)

r̃4 = Ṽ 11W̃
†
11W̃ 12Ṽ

†
12x̃2 + Ẽx̃1G + Ṽ 11Λ̃

−1
11 W̃

†
11W̃ 12ñ1 (4.68)

r̃5 = Ṽ 11W̃
†
11W̃ 12Ṽ

†
12x̃2 + Ẽx̃1G + ñ1 (4.69)

r̃6 = Ṽ
†
12x̃2 + Ẽx̃1G + ñ1 (4.70)

We have

I(r̃n
1 ; x̃n

2 |H̃
n
) = I(r̃n

2 ; x̃n
2 |H̃

n
) (4.71)

= I(r̃n
3 ; x̃n

2 |H̃
n
) + o(log(P )) (4.72)

= I(r̃n
4 ; x̃n

2 |H̃
n
) + o(log(P )) (4.73)

= I(r̃n
5 ; x̃n

2 |H̃
n
) + o(log(P )) (4.74)

= I(r̃n
6 ; x̃n

2 |H̃
n
) + o(log(P )), (4.75)

where (4.72) due to Lemma 11; (4.71) and (4.73) hold as W̃ 11Λ̃11 and Ṽ 11 are full rank square

matrices. (4.74) holds as changing noise variance will not change the DoF. (4.75) is true because

Ṽ 11W̃
†
11W̃ 12Ṽ

†
12 has the same distribution as Ṽ

†
12 and Ṽ 11W̃

†
11W̃ 12 is independent of Ṽ

†
12.

To find the DoF order of I(r̃n
6 ; x̃n

2 |H̃
n
), we first notice that for each slot t in one block, V †

12

can be divided into three parts: V †
12,a(t), V †

12,b(t) and V †
12,c.

1. V †
12,a(t) is of size M1 ×M2 and consists of M1 non-zero rows of E(t)V †

12.

2. V †
12,c is of size (N1 − S) ×M2 and is the same for all 1 ≤ t ≤ L. It consists of N1 − S

rows of V †
12 that do not appear in any V 12,a(t)†, 1 ≤ t ≤ L.

3. V †
12,b(t) is of size (S − M1) × M2 and consists of S − M1 rows of V †

12 that neither in

E(t)V 12,a(t)† nor in V †
12,c.
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Example 1. Assume N1 = 5, M1 = 2, L = 6, S = 4 and V 12 = [v1,v2, . . . ,vN1 ] where vi’s

are M2 × 1 vectors. Assume E(t) is the following

E(1) = [e1, e2], E(2) = [e1, e3], E(3) = [e1, e4],

E(4) = [e1, e2], E(5) = [e2, e4], E(6) = [e2, e3].

We have

V †
12,a(1) = [v1,v2]†, V †

12,a(2) = [v1,v3]†, V †
12,a(3) = [v1,v4]†,

V †
12,a(4) = [v1,v2]†, V †

12,a(5) = [v2,v4]†, V †
12,a(6) = [v2,v3]†,

V †
12,b(1) = [v3,v4]†, V †

12,b(2) = [v2,v4]†, V †
12,b(3) = [v2,v3]†,

V †
12,b(4) = [v3,v4]†, V †

12,b(5) = [v1,v3]†, V †
12,b(6) = [v1,v4]†,

and V †
12,c = v†5. Note that V †

12,c remains the same in one block of L slots.

Suppose receiver 1 receives r6 as in (4.70) and wants to decode the message of x2 that

goes through an equivalent channel V †
12. Then V †

12,a(t) are the directions of interference from

transmitter at time t, V †
12,b(t) are those directions that are temporarily interference-free at time

t, and V †
12,c are the directions which are interference free for a whole block. The associated

noises of the those directions are similarly defined as n2,a(t),n2,b(t) and n2,c(t).

To bound the DoF of I(r̃n
6 ; x̃n

2 |H̃
n
) of (4.76), we define

V †
12,ab(t) =




V †
12,a(t)

V †
12,b(t)


 , n1,ab(t) =




n1,a(t)

n1,b(t)


 , (4.76)

V †
12,bc(t) =




V †
12,b(t)

V †
12,c


 , n1,bc(t) =




n1,b(t)

n1,c(t)


 , (4.77)

and adopt the following notation for simplicity

ya(t) = V †
12,a(t)x2(t) + x1G(t) + n1,a(t) (4.78)

yb(t) = V †
12,b(t)x2(t) + n1,b(t) (4.79)

yc(t) = V †
12,cx2(t) + n1,c(t) (4.80)

ybc(t) = V †
12,bc(t)x2(t) + n1,bc(t) (4.81)
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In addition, ya(t)n,yb(t)n,yc(t)n,ybc(t)n are sequences of corresponding vectors of the tth slot

over n blocks. The collection of ya(1)n,ya(2)n, . . .ya(t)n is denoted as {y(1:t)
a }n. We also

define {y(1:t)
b }n , {y(1:t)

c }n and {y(1:t)
bc }n similarly. Using the chain rule, we have

I(r̃n
6 ; x̃n

2 |H̃
n
) = I

(
{Ṽ †

12,cx̃2 + ñ1,c}n; x̃n
2 |H̃

n
)

+ I
(
{Ṽ †

12,bx̃2 + ñ1,b}n; x̃n
2 |{Ṽ

†
12,cx̃2 + ñ1,c}n, H̃

n
)

+ I
(
{Ṽ †

12,ax̃2 + x̃1G + ñ1,a}n; x̃n
2 |{Ṽ

†
12,bcx̃2 + ñ1,bc}n, H̃

n
)

(4.82)

Now checking the second term in (4.82), we notice that

I
(
{Ṽ †

12,bx̃2 + ñ1,b}n; x̃n
2 |{Ṽ

†
12,cx̃2 + ñ1,c}n, H̃

n
)

=
L∑

t=1

I
(
yb(t)

n; x̃n
2 |{y(1:t−1)

b }n, ỹn
c , H̃

n
)

(4.83)

=
L∑

t=1

H
(
yb(t)

n|{y(1:t−1)
b }n, ỹn

c , H̃
n
)
−H

(
yb(t)

n|x̃n
2 , {y(1:t−1)

b }n, ỹn
c , H̃

n
)

(4.84)

=
L∑

t=1

H
(
yb(t)

n|{y(1:t−1)
b }n, ỹn

c , H̃
n
)
−H

(
yb(t)

n|x2(t)n,yb(t)
n, H̃(t)n

)
(4.85)

≤
L∑

t=1

H (yb(t)
n|yc(t)

n,H(t)n)−H (yb(t)
n|x2(t)n,yc(t)

n,H(t)n) (4.86)

=
L∑

t=1

I (yb(t)
n;x2(t)n|yc(t)

n,H(t)n) (4.87)

=
L∑

t=1

[I (yb(t)
n,yc(t)

n;x2(t)n|H(t)n)− I (yc(t)
n;x2(t)n|H(t)n)] (4.88)

≤
L∑

t=1

(
N1 −M1

N1 − S
− 1

)
I (yc(t)

n;x2(t)n|H(t)n) (4.89)

≤ nL(S −M1) log(P ) + o(log(P )) (4.90)

where:

• (4.83) and (4.88) follow by chain rule.

• (4.84) and (4.87) are expressing mutual information via entropy.

• (4.85) holds as the second term is the entropy of noise when conditioning on x2(t)n.
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• (4.86) is based on the fact that conditioning reduces entropy.

• (4.89) follows by Lemma 12.

• (4.90) holds due to the fact that the DoF of an (N1 − S) × M2 point-to-point MIMO

channel is at most min(N1 − S,M2) = N1 − S.

The third term in (4.82) can be bounded in a similar fashion. We have

I
(
{Ṽ †

12,ax̃2 + x̃1G + ñ1,a}n; x̃n
2 |{Ṽ

†
12,bcx̃2 + ñ1,bc}n, H̃

n
)

=
L∑

t=1

I
(
ya(t)

n; x̃n
2 |{y(1:t−1)

a }n, ỹn
bc, H̃

n
)

(4.91)

=
L∑

t=1

H
(
ya(t)

n|{y(1:t−1)
a }n, ỹn

bc, H̃
n
)
−H

(
ya(t)

n|x̃n
2 , {y(1:t−1)

a }n, ỹn
bc, H̃

n
)

(4.92)

=
L∑

t=1

H
(
ya(t)

n|{y(1:t−1)
a }n, ỹn

bc, H̃
n
)
−H

(
ya(t)

n|x2(t)n,ybc(t)
n, H̃

n
)

(4.93)

≤
L∑

t=1

H (ya(t)
n|ybc(t)

n,H(t)n)−H (ya(t)
n|x2(t)n,ybc(t)

n,H(t)n) (4.94)

=
L∑

t=1

I (ya(t)
n;x2(t)n|ybc(t)

n,H(t)n) (4.95)

≤ n
L∑

t=1

I (yaG(t);x2G(t)|ybcG(t),H(t)) (4.96)

≤ nL log
(

det
(

P

M1
IM1 + IM1 +

P

M2
IM1

)
det

(
P

M2
I(N1−M1) + I(N1−M1)

))

− nL log
(

det
(

P

M2
I(N1−M1) + I(N1−M1)

)
det

(
P

M1
IM1 + IM1

))
(4.97)

= o(log(P )) (4.98)

where:

• (4.91) follows by chain rule.

• (4.92) and (4.95) are expressing mutual information via entropy.

• (4.93) holds as the second term is the entropy of noise when conditioning on x2(t)n.

• (4.94) is based on the fact that conditioning reduces entropy.
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• (4.96) and (4.97) follows by Lemma 14, where the covariance matrix of x1G(t) + n1,a(t)

and n1,bc(t) are P
M1

IM1 +IM1 and I(N1−M1), respectively. In addition, the optimal input

of x2(t) is CSCG with covariance matrix P
M2

I(N1−M1).

Substitute (4.90) and (4.98) in to (4.82), we have

I(r̃n
1 ; x̃n

2 |H̃
n
) ≤ I

(
{Ṽ †

12,cx̃2 + ñ1,c}n; x̃n
2 |H̃

n
)

+ nL(S −M1) log(P ) + o(log(P )) (4.99)

Now we go back to (4.64). Notice that if we choose D = [0N1×(min(M2,N2)−N1), IN1 ],

(DV †
22,Dn2) has the same distribution as (V †

12,n1) as both V 22 and V 12 are uniformly

distributed and V 22 has no fewer columns than V 12. (Please refer to [57, Sec. IV-C2] for more

details). We have the following Markov chain:

x̃2 — Ṽ
†
22x̃2 + ñ2 — Ṽ

†
12x̃2 + ñ1 — Ṽ

†
12,cx̃2 + ñ1,c. (4.100)

Denote T = min(M2, N2) − (N1 − S). Let V 22,a contain the first T rows of V 22, and n2,a

contain the first T elements of n2. We can bound η as

η ≤ µI
(
{Ṽ †

22x̃2 + ñ2}n; x̃n
2 |{Ṽ

†
12,cx̃2 + ñ1,c}n, H̃

n
)

− I
(
{Ṽ †

12x̃2 + ñ1}n; x̃n
2 |{Ṽ

†
12,cx̃2 + ñ1,c}n, H̃

n
)

+ (1− µ)nL(S −M1) log(P ) + o(log(P )) (4.101)

= µI
(
{Ṽ †

22,ax̃2 + ñ2}n; x̃n
2 |{Ṽ

†
12,cx̃2 + ñ1,c}n, H̃

n
)

− I
(
{Ṽ †

12,abx̃2 + ñ1}n; x̃n
2 |{Ṽ

†
12,cx̃2 + ñ1,c}n, H̃

n
)

+ (1− µ)nL(S −M1) log(P ) + o(log(P )) (4.102)

Notice that the size of V †
12,ab is S ×M2. Based on Lemma 12, if we choose

µ =
S

T
(4.103)

the difference of the first two mutual information terms of (4.102) is at most in the order of

o(log(P )) and we have

λ ≤
(

1− S

T

)
(S −M1) =

(min(M2, N2)−N1)(S −M1)
min(M2, N2)− (N1 − S)

(4.104)

Recall that d1 + µd2 ≤ M1 + µ(N1−M1) + λ. We thus have the outer bound on the sum DoF

as shown in (4.43) and the proof of the converse part of Theorem 4 is complete.
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4.5.2 Achievability

In order to show the achievability part of Theorem 4, we only need to construct an achiev-

able scheme for the corner point of the DoF region. Without loss of generality, we assume

that M2 = min(M2, N2); otherwise, transmitter 2 can simply use N2 transmit antennas. Since

S(N1 −M1) + (M2 −N1)(S −M1) = M2(S −M1) + M1(N1 − S), it is sufficient to show that

the following DoF pair

(d1, d2) = (SM1,M2(S −M1) + M1(N1 − S)) (4.105)

can be achieved over S slots with antenna mode switching at transmitter one among S modes.

Similar to Section 4.4.4, we choose the mode switching pattern as follows:

E(1) = [e1, e2, . . . , eM1 ],

E(2) = [e2, e3, . . . , eM1+1],

...

E(S) = [eK , e1, . . . ,eM1−1].

We propose to use a generalization of the joint nulling and beamforming design that is

investigated in Section 4.4.3. Unlike the frequency nulling that has been used for S = N1, this

scheme requires that receiver 1 performs nulling in both frequency and spatial domains. We

hereby use two superscripts F and S to indicate the matrices that associated with frequency

processing and spatial processing.

The generalized joint nulling and beamforming has the following structure:

Q̃ = QF
M1×S ⊗QS

S×N1
, (4.106)

P̃ = [P̃ a, P̃ b], where (4.107)

P̃ a = [P F
a]S×(S−M1) ⊗ [P S

a]M2×M2 , (4.108)

P̃ b = [P F
b ]S×M1 ⊗ [P S

b ]M2×(N1−S). (4.109)

The received signal at receiver 1 can be written as

ỹ1 = H̃11x̃1 + H̃12[P̃ a, P̃ b]x̃2 + z̃1 (4.110)
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Figure 4.2 Space-Frequency dimension allocation for the two users when
S < N1.

where x̃1 is a length M1S vector, and x̃2 is a length M2(S −M1) + M1(N1 − S) vector.

After applying nulling matrix Q̃, we have

Q̃ỹ1 = Q̃H̃11︸ ︷︷ ︸
Ã

x̃1 +
[

Q̃H̃12P̃ a︸ ︷︷ ︸
B̃

, Q̃H̃12P̃ b︸ ︷︷ ︸
C̃

]
x̃2 + Q̃z̃1. (4.111)

To achieve the degrees of freedom pair shown in (4.105) for both users, it is sufficient to design

our P̃ and Q̃ to satisfy the following conditions simultaneously

1. rank(Ã) = M1S,

2. rank([P̃ a, P̃ b]) = M2(S −M1) + M1(N1 − S),

3. B̃ = 0,

4. C̃ = 0.
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We propose to use the following realizations:

QF = [VS(1, ωS , . . . , ωM1−1
S )]T , (4.112)

P F
a = VS(ω−M1

S , ω
−(M1+1)
S , . . . , ω

−(S−1)
S ). (4.113)

P F
b = (QF)†, (4.114)

P S
a = IM2 , (4.115)

P S
b = [IN1−S ;0], (4.116)

QS = null(H12P
S
b )

T , (4.117)

where (4.117) means that QSH12P
S
b = 0. Here, we choose ((QF)†,P F

a) to be a size S×S IFFT

matrix, which offers the same frequency domain explanation as discussed in Section 4.4.5; see

also Fig. 4.2. It is trivial to see B̃ = 0. In other words, receiver 1 will simply ignore the signal

in the last S −M1 frequencies and only using the signal in the first S frequencies to decode

his own message. Therefore, P̃ a contains the interference directions from all the antennas of

transmitter 2 but only in certain frequencies. Now, after applying the frequency nulling, there

are N1S dimensions remaining, which contain both user 1’s message and the message of user

2 that is transmitted by P̃ b. Among all the N1S dimensions, receiver 1 only requires M1S

dimensions to decode his own message, while leaving additional S(N1−M1) dimensions for user

2. Here we choose one possible way of decomposing the remaining dimensions. Transmitter 2

sends some messages in the first M1 frequencies but only though N1 − S antennas, as shown

in (4.116). Notice that

C̃ = Q̃H̃12P̃ b

= (QF ⊗QS)(IS ⊗H12)(P F
b ⊗ P S

b ) (4.118)

= (QFP F
b )⊗ (QSH12P

S
b ) (4.119)

which means that the choice of QS as given in (4.117) is sufficient to set C̃ = 0. It is clear

that for the interference signal sent via P̃ b, receiver 1 only need to do spatial zero-forcing in

our scheme, which can be seen from the fact QFP F
b = IS due to (4.114).
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Figure 4.3 The benefit of antenna mode switching on the DoF region, in
the case of M1 < N1 < min(M2, N2).

To satisfy the second condition, notice that rank(P̃ a) = M2(S − M1) and rank(P̃ b) =

M1(N1 − S), it is sufficient to show that P̃ a ⊥ P̃ b, which is obvious as

P̃
†
bP̃ a = (QFP F

a)⊗ ((P S
b )
†IM2) = 0 (4.120)

because QFP F
a = 0. This is not surprising as the signal of user 2 transmitted via P̃ a and P̃ b

are orthogonal in frequency domain. The remaining part is to show the first condition holds,

which is true because here Ã has the same structure as Ã
′
of (4.39) with N1 replaced by S

and hi replaced by QS
S×N1

hi.

4.5.3 Discussion

It is not surprising that when S = N1, (4.43) implies

d1 +
N1

min(M2, N2)
d2 ≤ N1 (4.121)
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which is the same as (4.7) and that in [54, Theorem 3] when M1 < N1 < min(M2, N2). For

the scheme that we discussed above, P̃ b disappears and it is the DoF achievable scheme that

we developed in Section 4.4.3. In addition, when S = M1, (4.43) becomes (4.12) and P̃ a

disappears, the general scheme reduces to the DoF-optimal spatial zero-forcing as shown in

[57]. Hence, for one extra mode at transmitter 1, we can further align min(M2, N2)−N1 streams

of interference over S slots. The incremental gain per slot is reduced when S increases; see

Fig. 4.3. Our result reveals the fundamental benefit that can be obtained from reconfigurable

antenna modes when there is no CSIT and M1 < N1 < min(M2, N2). In addition, combining

with the known results, we know that in order to achieve the DoF region of two-user FIC and

ZIC, zero-forcing in frequency and spatial domains suffice regardless of the CSIT assumption.

4.6 Summary

We derived the DoF region for the MIMO Z and full interference channels when perfect

channel state information is available at receivers, including i) the Z interference channel with

channel state information at the transmitter; ii) the Z and full interference channel without

channel state information at the transmitter, but with reconfigurable antennas at the trans-

mitters. For both FIC and ZIC, when the number of antenna modes S at the transmitter with

the reconfigurable antennas is not less than the number of receive antennas at the correspond-

ing receiver, the DoF region is maximized and no longer depends on the number of antenna

modes. Otherwise, each additional antenna mode can bring extra gain in the DoF region when

M1 < N1 < min(M2, N2) for both FIC and ZIC, and when M2 < N2 < min(M1, N1) for FIC.

The incremental gain diminishes as S increases.

The achievability schemes we designed for the reconfigurable antenna cases rely on time

expansion and joint beamforming and nulling over the time-expanded channel. Interestingly,

they also bear a space-frequency coding interpretation. We completely characterized the DoF

regions for both Z and full interference channels when transmitter antenna mode switching is

allowed. Our result can specialize to previously known cases when there is no antenna mode

switching by simply setting the number of antenna modes equal to the number of transmit
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antennas. Our work reveals how the channel variation introduced by the extra antenna mode

switching brings benefits in the sense of the DoF region.

4.7 Appendix

In this section, we give the lemmas that are used for proving our results. The following

lemmas are from [57]. Some symbol notation is slightly changed to be consistent with the

notation being used in this thesis.

Lemma 10. [57, Lemma 1] Let R(N ×M) be an isotropic complex random matrix and define

K = min(M, N). Then there exists a decomposition R ∼ WΛV † such that W (N × K),

Λ(M ×K) and V (M ×K) satisfy:

1. V †V = W †W = IK and Λ is a diagonal random matrix with non-negative elements.

2. V is independent of (W ,Λ) and is uniformly distributed on V = {V ∈ CM×K : V†V =

IK}. ¤

Lemma 11. [57, Lemma 2] Let Λ1 and Λ2 be two M × M diagonal random matrices with

strictly positive diagonal elements almost surely. Let x denote a random vector and u denote a

CSCG random vector with arbitrary covariance. Assume that x, u and (Λ1,Λ2) are indepen-

dent. Define random matrix Λmin = min(Λ1,Λ2), where min operation is element-wise. Then

we have

I(Λ2x + u;x|Λ2)− I(Λ1x + u;x|Λ1) ≤ 2E log
(

detΛ2

detΛmin

)

≤ 2E log+ detΛ2 + 2E

[
log+ 1

detΛmin

]
(4.122)

where we define log+(x) = log max(1;x). ¤

Lemma 12. [57, Lemma 3] Let x be a random vector in CM , uj ∼ CN (0, IKj ), j = 1, 2, 3,

and K1 ≤ K2 ≤ M . In addition, let V j be a random M ×Kj matrix for j = 1, 2, 3. Suppose

that conditioned on V 3 = V3, V j is uniformly distributed on Vj = {V ∈ CM×Kj |V†V = IKj

and V†V3 = 0} for j = 1, 2. Suppose also that x,u1,u2,u3 and (V 1,V 2,V 3) are mutually
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independent. Then

1
K1
I

(
V †

1x + u1;x|V †
3x + u3,V

)
≥ 1

K2
I

(
V †

2x + u2;x|V †
3x + u3,V

)
. (4.123)

Furthermore, suppose (V 1(i),V 2(i),V 3(i))n
i=1 is i.i.d. with identical joint distribution as that

of (V 1,V 2,V 3) Then

1
K1
I

(
{V †

1x + u1}n;xn|{V †
3x + u3}n,V n

)
≥ 1

K2
I

(
{V †

2x + u2}n;xn|{V †
3x + u3}n,V n

)

(4.124)

In particular, if V 3 ≡ 0, (4.123) and (4.124) become

1
K1
I

(
V †

1x + u1;x|V 1

)
≥ 1

K2
I

(
V †

2x + u2;x|V 2

)
. (4.125)

and

1
K1
I

(
{V †

1x + u1}n;xn|V n
1

)
≥ 1

K2
I

(
{V †

2x + u2}n;xn|V n
2

)
(4.126)

respectively. ¤

We restate the result in [57, Theorem 3] as the following lemma using the notation and

model we have introduced.

Lemma 13. Suppose that w and wG are two random M -vectors, H(N × M) is a full-rank

deterministic matrix, and v is a random N -vector which is independent of w and wG. We

assume that E||W ||2 ≤ γ. Then

I(Hw + v;w) ≤ I(HwG + v;wG) + sup
E||a||≤γ

I(Ha + HwG;a). (4.127)

In particular, if wG has distribution CN (0, γ
M I), then

I(Hw + v;w) ≤ I(HwG + v;wG) + min(M, N). (4.128)

Furthermore, for channel model (4.1)–(4.2) and fixed channel input x1(1), . . . ,x1(n), we have

I(yn
1 ;xn

1 |Hn) ≤ I(yn
1 ;xn

1G|Hn) + n min(M1, N1) (4.129)

where

y1G = H11x1G + H12x2 + z1 (4.130)

¤
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Lemma 14. [57, Lemma 4] Consider following two channels with M -vector input x and fading

matrices A and B

y = Ax + n1 (4.131)

z = Bx + n2 (4.132)

where n1 ∼ CN (0,Σ1) and n2 ∼ CN (0,Σ2) are mutually independent CSCG noise, and matrix

[ A
B ] is isotropic. Furthermore, we assume that E||x||2 ≤ γ. For notational convenience,

let yG and zG be the corresponding outputs through model (4.131)–(4.132) with input xG ∼
CN (0, γ

M IM ), respectively. Then

I(y;x|z,A,B) ≤ I(yG;xG|zG,A,B) (4.133)

= E log


det







Σ1 0

0 Σ2


 +

γ

M




A

B




[
A†B†

]






− E log
(
det

(
Σ2 +

γ

M
BB†

)
detΣ1

)
. (4.134)

Furthermore, we have

I(yn;xn|zn,An,Bn) ≤ nI(yG;xG|zG,A,B). (4.135)

where conditioned on xn, (y(i),z(i),B(i))n
i=1 are i.i.d. with identical joint distribution as

(y,z,A,B) conditioned on x. ¤
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CHAPTER 5. DEGREES OF FREEDOM REGION FOR AN

INTERFERENCE NETWORK WITH GENERAL MESSAGE DEMANDS

5.1 Introduction

Interference alignment with multicast messages has been studied in compound channel

setup for broadcast channel [62, 43]. The compound setting was also explored for X channel and

interference channel in [62] as well, where the total number of DoF is shown to be unchanged for

these two channels. However, the precise DoF region has not been identified. The interference

alignment for a network where each message is assumed to be requested by an equal number of

receivers was investigated in [46] using ergodic interference alignment but only the achievable

sum rate is reported.

In this chapter, we consider a natural generalization of the multiple unicasts scenario consid-

ered in the seminal work of Cadambe and Jafar [39]. The interference networks we investigated

allows general message demands, which includes multiple unicasts and multiple multicasts, or

combination of them.

The chapter is organized as follows. The system model is given in Section 5.2. We develop

an outer bound on the degrees of freedom region of this system, and then show it is achievable

in Section 5.3. We discuss approaches for reducing the number of alignment constraints in

Section 5.4. Finally, Section 5.5 concludes this chapter.
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5.2 System model

We consider a single hop interference network with K transmitters and J receivers, each

having M antennas. The received signal at the jth receiver can be expressed as

yj(t) =
K∑

k=1

Hjk(t)xk(t) + zj(t), (5.1)

Recall that each receiver can request an arbitrary set of messages from multiple transmitters

and Mj is the set of indices of those messages requested by receiver j. Our objective is to

study the DoF region of an interference network with general message demands when there is

perfect CSI at receivers and global CSI at transmitters. Denote the capacity region of such a

system as C(P ). The corresponding DoF region is defined as

D :=
{
d = (d1, d2, · · · , dK) ∈ RK

+ : ∃(R1(P ), R2(P ), · · · , RK(P )) ∈ C(P ),

such that dk = lim
P→∞

Rk(P )
log(P )

, 1 ≤ k ≤ K

}
. (5.2)

We assume that the channel coherent time L = 1 in this chapter. As we pointed before, if

J = K and Mj = {j},∀j, the general model we considered here will reduce to the well-known

K user M antenna interference channel as in [39].

5.3 DoF region of interference network with general message demands

In this section, we prove the DoF region of the interference network with general message

demands. Our main result can be summarized as the following theorem.

Theorem 5. The DoF region of an interference network with general message demands with

K transmitters and J receivers, is contained in the following region

D =



d ∈ RK

+ :
∑

k∈Mj

dk + max
i∈Mc

j

(di) ≤ M, ∀1 ≤ j ≤ J



 . (5.3)

When M = 1, the above outer bound D is the DoF region. ¤
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5.3.1 Some discussions on the DoF region

5.3.1.1 The converse argument

We now show the region given by (5.3) is an outer bound based on a genie argument [35, 39].

Suppose that for receiver j, there is a genie who provides all the interference messages except

for the interference message with the largest DoF. If there are several such messages having

the largest DoF, the genie withholds the one with the smallest index. Specifically, the index

of this interference message withheld by the genie is denoted as

δj = min

{
k

∣∣∣∣k ∈Mc
j , and dk = max

i∈Mc
j

(di)

}
. (5.4)

All other interference messages are revealed by the genie to receiver j. If Mc
j is an empty set,

we define dδj
= 0.

With the genie’s help, all interference messages except for message δj can be removed. Since

the requested messages Mj can be decoded, they can be subtracted from the received signal.

It is evident that since message δj needs to be decoded by some receiver, it holds that dδj
≤ M

using the point-to-point channel DoF constraint. Therefore, receiver j can also decode message

δj after subtracting all the other messages as it has M antennas as well. Hence, it follows due

to multiple access channel outer bound that any achievable DoF point (d1, d2, . . . , dK) must

satisfy

∑

k∈Mj

dk + max
i∈Mc

j

(di) ≤ M, ∀1 ≤ j ≤ J. (5.5)

¤

5.3.1.2 DoF region representation

The DoF region is a convex polytope. The representation of DoF region in (5.3) is known as

the half-space representation in geometry [81]. Another representation of the convex polytope

is the vertex representation: as any interior point within a convex polytope can be represented

by the linear combination of the vertices. Such a fact is widely used to show the capacity or

DoF region with time-sharing argument. That is, it is necessary and sufficient to show the
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d1

d4

Tx 1

Tx 2

d2

Tx 3

Tx 4

Rx 1

Rx 2

Rx 3
d3 d4

d2

d3

d1

d4

d2

d3

d1

requested messages aligned interference
messages

Figure 5.1 Example system setup (left) and alignment for achieving DoF
point (d1, d2, d3) = (1−2d4, d4, d4) (right). Message demanding
relationship is shown on the left part with arrow lines.

achievability of all the vertices of the capacity or DoF region. Though finding all the vertices

of convex polytope is a well-studied problem in geometry [82], the complexity of finding all

the vertices of a high dimensional convex polytope is high. In addition, there is no general

representation of the vertices based on the half-space representation. Hence, finding the specific

achievability scheme for different vertices to validate the DoF region is not efficient at all.

In the following part, we will use a simple example to demonstrate the DoF region and

reveal the basic idea of our achievability scheme.

5.3.2 An example of the general message demand and the DoF region

We first show the geometric picture of the DoF region for a specific example. Consider

an interference network with 4 transmitters and 3 receivers; see Fig. 5.1. All the transmitters

and receivers have single antenna; that is, M = 1. Assume M1 = {1, 2}, M2 = {2, 3} and
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d2

d3

d1

d3

d1

d2

(0, 0, 1− d4)

(1− d4, 0, 0)

(0, 1− d4, 0)

(
1−d4

2 , 1−d4

2 , 1−d4

2 )

(1− d4, 0, 0)

(0, 1− d4, 0)

(0, 0, 1− d4)

(1− 2d4, d4, d4)

(d4, d4, 1− 2d4)

(d4, 1− 2d4, d4)

Case (b) 1
3 ≤ d4 ≤ 1Case (a) 0 ≤ d4 ≤

1
3

Figure 5.2 DoF region in lower dimensions as a function of d4.

M3 = {3, 4}. The DoF region of the system according to Theorem 5 is as follows

D =





d ∈ R4
+

∣∣∣∣∣∣∣∣∣∣∣∣∣

d1 + d2 + d3 ≤ 1

d1 + d2 + d4 ≤ 1

d2 + d3 + d4 ≤ 1

d1 + d3 + d4 ≤ 1





. (5.6)

The region is 4-dimensional and hence difficult to illustrate. However, if the DoF of one

message, say d4, is fixed, the DoF region of the other messages can be illustrated in lower

dimensions as a function of d4; see Fig. 5.2.

We first investigate the region when 0 ≤ d4 ≤ 1
3 , for which the coordinates of the vertices

are given in Fig. 5.2, case (a). The achievability of the vertices on the axes is simple as

there is no need of interference alignment. Time sharing between the single-user rate vectors

{ek, k = 1, 2, . . . , K} is sufficient. For the remaining three vertices, we only need to show the

achievability of one point as the achievability of the others are essentially the same by swapping

the message indices.

We now use the scheme based on [39] to do interference alignment and show (d1, d2, d3, d4) =

(1 − 2d4, d4, d4, d4) is achievable for any 0 ≤ d4 ≤ 1
3 . Recall τ is the duration of the time
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expansion in number of symbols. Hence, H̃jk is a size τ × τ diagonal matrix (recall that

M = 1). Denote the beamforming matrix of transmitter k as Ṽ k. First, we want messages

3 and 4 to be aligned at receivers 1. Notice that messages 3 and 4 have the same number of

DoF. We choose to design beamforming matrices such that the interference from transmitter

4 is aligned to interference from transmitter 3 at receiver 1. Therefore we have the following

constraint

H̃14Ṽ 4 ≺ H̃13Ṽ 3. (5.7)

Note that the interference due to transmitter 1 has a larger DoF at receiver 2; thus, we must

align interference from transmitter 4 to interference from transmitter 1 at receiver 2, which

leads to

H̃24Ṽ 4 ≺ H̃21Ṽ 1. (5.8)

Similarly at receiver 3, we have

H̃42Ṽ 2 ≺ H̃41Ṽ 1. (5.9)

The alignment relationship is also shown in Fig. 5.1. Notice that d1 is larger than d2, d3

and d4. Therefore it is possible to design Ṽ 1 into two parts as [Ṽ 1a, Ṽ 1b], where Ṽ 1a is used

for transmitting part of the message 1 with the same DoF as other messages. The second part

Ṽ 1b is used for transmitting the remaining DoF of message 1. In addition, all the columns in

[Ṽ 1a, Ṽ 1b] are linearly independent.

The design of the first part falls into the framework of classic asymptotic interference

alignment scheme in [39]. The beamforming matrices in [39] is chosen from a set of beamforming

columns, whose elements are generated from the product of the powers of certain matrices and

a vector. We term such a vector as a base vector in this chapter. The base vector was chosen

to be the all-one vector in [39]. The scheme proposed in [39] was further explored for wireless

X network [40] with multiple independent messages at single transmitter, where multiple

independent and randomly generated base vectors are used for constructing the beamforming

matrices. In our particular example, as no interference is aligned to the second part of message
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1, we may choose an independent and randomly generated matrix for Ṽ 1b. However, in general

we still need to construct the beamforming matrix structurally using multiple base vectors as

we will see in Section 5.3.3. The DoF point can be achieved asymptotically when the number

of time expansion τ goes to infinity. We omit further details of beamforming construction for

this particular example.

The DoF region of case (b) in Fig. 5.2 can be similarly achieved by showing that the vertex

(d1, d2, d3, d4) = (1−d4
2 , 1−d4

2 , 1−d4
2 , d4) is achievable, which will also require the multiple base

vector technique.

We remark that the DoF region in this example can also be formulated as the convex hull

of the following vertices {0, e1, e2, e3, e4,
1
31}. The achievability of the whole DoF therefore

can be alternatively established by showing that 1
31 = (1

3 , 1
3 , 1

3 , 1
3) is achievable.

5.3.3 Achievability of DoF region with single antenna transmitters and receivers

We first consider the achievability scheme when all the transmitters and receivers have

single antennas. The multiple antenna case can be reduced to the single antenna case and will

be discussed later. It is evident that we only need to show any point in D satisfying

dK ≤ dK−1 ≤ · · · ≤ d2 ≤ d1 (5.10)

is achievable, for otherwise the messages can be renumbered appropriately.

5.3.3.1 The set of alignment constraints

The achievability scheme is based on interference alignment over a time expanded channel.

Based on (5.10), we impose the following relationship on the cardinality of all the beamforming

matrices of the transmitters:

|Ṽ K | ≤ |Ṽ K−1| ≤ · · · ≤ |Ṽ 2| ≤ |Ṽ 1|. (5.11)

At receiver j, we always align the interference messages with larger indices to the interference

message with index δj , which is the interference message with the largest DoF, given as

δj = min{k|k ∈Mc
j} (5.12)
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Denote T
[j]
m,n as following

T [j]
m,n = H̃

−1
jmH̃jn, (5.13)

which is the matrix corresponding to the alignment constraint

H̃jnṼ n ≺ H̃jmṼ m, (5.14)

that enforces the interference from message n to be aligned to the interference of message m

at receiver j. Based on (5.11), for any T
[j]
m,n matrix, we always have n > m.

For convenience, we define the following set

C :=





(m,n, j)

∣∣∣∣∣∣∣∣∣∣

j ∈ {1, . . . , J},
m, n ∈Mc

j ,

m = δj , n > m





. (5.15)

In other words, C is a set of vectors denoting all the alignment constraints. There exists a

one-to-one mapping from a vector (m,n, j) in C to the corresponding matrix T
[j]
m,n.

5.3.3.2 Time expansion and base vectors

It is not difficult to see that the vertices of the DoF region given in (5.3) must be rational

as all the coefficients and right hand side bounds are integers (either zero or one). Therefore

we only need to consider the achievability of such rational vertices, although the proof below

applies to any interior rational points in the DoF region as well.

For any rational DoF point d within D and satisfying (5.10), we can choose a positive

integer κ, such that

κd = (d̄1, d̄2, . . . , d̄K) ∈ ZK
+ . (5.16)

Towards this end, we propose to use multiple base vectors to construct the beamforming

matrices. The total number of base vectors is d̄1. Denote all the base vectors as wi, 1 ≤ i ≤ d̄1.

Transmitter k will use base vectors wi, 1 ≤ i ≤ d̄k to construct its beamforming matrix, and

the same base vectors will be used by transmitters 1, 2, . . . , k − 1 as well, see Fig. 5.3. The
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...

d̄1

d̄2

d̄K

number of base vectorsmessage index

1

2

K w1 wd̄K

wd̄2

wd̄1
· · ·

· · ·

· · ·

w1

w1

...
...

Figure 5.3 Illustration of the base vectors used by different messages.

elements of wi are independent and identically drawn from some continuous distribution. In

addition, we assume that the absolute value of the elements of wi are bounded between a

positive minimum value and a finite maximum value, in the same way that entries of Hjk(t)

are bounded (see Section 2.4.1). Denote Γ = |C|, which is the total number of T
[j]
m,n matrices

as well. Let l be a positive integer, we propose to use τ = κ(l + 1)Γ fold time expansion.

5.3.3.3 Beamforming matrices design

The beamforming matrices can be generated in the following way

i) Denote Γk as the cardinality of the following set

Ck = {(m,n, j)|(m,n, j) ∈ C, n ≤ k} k = 1, 2 . . . ,K, (5.17)

which is the number of matrices whose exponents are within {0, 1, . . . , l − 1}, while the

other Γ − Γk matrices can be raised to the power of l. It is evident that ΓK = Γ, and

Γ1 = 0.

ii) Transmitter K uses d̄K base vectors. For base vector wi, 1 ≤ i ≤ d̄K , it generates the

following lΓ columns

∏

(m,n,j)∈C

(
T [j]

m,n

)αm,n,j

wi (5.18)

where αm,n,j ∈ {0, 1, . . . , l − 1}. Hence, the total number of columns of Ṽ K is d̄K lΓ.
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iii) Similarly, transmitter k uses d̄k base vectors. For base vector wi, 1 ≤ i ≤ d̄k, it generates

lΓk(l + 1)Γ−Γk columns

∏

(m,n,j)∈C

(
T [j]

m,n

)αm,n,j

wi (5.19)

where

αm,n,j ∈ {0, 1, . . . , l} n > k (5.20)

αm,n,j ∈ {0, 1, . . . , l − 1} n ≤ k (5.21)

In summary, the beamforming design is as follows, for every message, we construct a

beamforming column set as

Ṽk =





∏

(m,n,j)∈C

(
T [j]

m,n

)αm,n,j

wi

∣∣∣∣1≤ i≤ d̄k, αm,n,j∈





{0, 1, . . . , l} if n > k

{0, 1, . . . , l − 1} otherwise





1≤k≤K.

(5.22)

The beamforming matrix Ṽ k is chosen to be the matrix that contains all the columns of Ṽk.

5.3.3.4 Alignment at the receivers

Assume (k, k′, j) ∈ C, so that message k′ needs to be aligned with message k < k′ at receiver

j. We now show that this is guaranteed by our design. Let wi, 1 ≤ i ≤ d̄k′ be a base vector

used by transmitter k′, and hence also used by transmitter k. From (5.19), the beamforming

vectors generated by wi at transmitter k can be expressed in the following way

∏

(m,n,j)∈C
n≤k

(
T [j]

m,n

)αm,n,j

︸ ︷︷ ︸
αm,n,j∈{0,1,...,l−1}

∏

(m,n,j)∈C
(m,n)=(k,k′)

(
T [j]

m,n

)αm,n,j ∏

(m,n,j)∈C
n>k

(m,n) 6=(k,k′)

(
T [j]

m,n

)αm,n,j

︸ ︷︷ ︸
αm,n,j∈{0,1,...,l}

wi, (5.23)

whereas those at the transmitter k′ can be expressed as

∏

(m,n,j)∈C
n≤k′

(m,n) 6=(k,k′)

(
T [j]

m,n

)αm,n,j ∏

(m,n,j)∈C
(m,n)=(k,k′)

(
T [j]

m,n

)αm,n,j

︸ ︷︷ ︸
αm,n,j∈{0,1,...,l−1}

∏

(m,n,j)∈C
n>k′

(
T [j]

m,n

)αm,n,j

︸ ︷︷ ︸
αm,n,j∈{0,1,...,l}

wi. (5.24)
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Comparing the ranges of αk,k′,j in (5.23) and (5.24), i.e., the middle terms, it can be verified

that the columns in (5.24) multiplied with T
[j]
k,k′ , will be a column in (5.23), ∀(k, k′, j) ∈ C.

That is, message k′ can be aligned to message k for any j such that (k, k′, j) ∈ C.
The alignment scheme works due to the following reasons.

i) Let αm,n,j(k) denote the exponent of the (m,n, j) term for Ṽ k. The construction of the

beamforming column set guarantees that

max αm,n,j(m) > max αm,n,j(n), ∀(m,n, j) ∈ C (5.25)

by setting

max αm,n,j(m) = l, (5.26)

max αm,n,j(n) = l − 1. (5.27)

With (5.25), we are guaranteed all vectors in Ṽ n, when left multiplied with T
[j]
m,n (which

has the effect of increasing the exponent of T
[j]
m,n by one), generates a vector that is

within the columns of Ṽ m. Hence the alignment is ensured.

For other terms where k is not m or n, max αm,n,j(k) can be either l or l − 1.

ii) The base vectors used by transmitter n are also used by transmitter m < n. This

guarantees that if the interference from transmitter n needs to be aligned with interference

from transmitter m, where m < n, the alignment is ensured with the condition (5.25).

5.3.3.5 Achievable Rates

It is evident that Ṽ k is a tall matrix of dimension κ(l + 1)Γ × d̄kl
Γk(l + 1)Γ−Γk . We also

need to verify it has full column rank by using Lemma 15 (see appendix in Section 5.6) to show

that its upper square submatrix is full rank. Notice that all the entries are monomials and

the random variables of the monomial are different in different rows. In addition, for a given

row r, 1 ≤ r ≤ d̄kl
Γk(l + 1)Γ−Γk , any two entries have different exponents. Therefore, based on

Lemma 15, Ṽ k has full column rank and

lim
l→∞

|Ṽ k|
τ

= lim
l→∞

d̄kl
Γk(l + 1)Γ−Γk

κ(l + 1)Γ
=

d̄k

κ
= dk. (5.28)
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5.3.3.6 Separation of the signal and interference spaces

Finally, we need to ensure that the interference space and signal space are linearly in-

dependent for all the receivers. Let the set of messages requested by receiver j be Mj =

{m1,j ,m2,j , . . . , mβj ,j}, where βj = |Mj |. For receiver j to be satisfied the following matrix

Λj =
[
H̃jm1,j Ṽ m1,j |H̃jm2,j Ṽ m2,j | . . . , H̃jmβj,j

Ṽ mβj,j
|H̃jδj

Ṽ δj

]
(5.29)

needs to have full rank for all 1 ≤ j ≤ J .

Notice that for any point within D
∑

m∈Mj

d̄m + d̄δj
≤ κ (5.30)

always holds (recall M = 1). Therefore Λj is a matrix that is either tall or square. For any

row r of its upper square sub-matrix, its elements can be expressed in the following general

form:

Hjk(r)
∏

(m,n,j)∈C

(
H−1

jn (r)Hjm(r)
)αm,n,j

[wi]r. (5.31)

The elements from different blocks (that is, different [H̃jkṼ k], k ∈ Mj ∪ {δj}) are different

due to the fact that Hjk(r)’s are different, hence the monomials do not have the same random

variables. Within one H̃jkṼ k, two monomials are different either because they have different

[wi]r, 1 ≤ i ≤ d̄k, or, if they have the same [wi]r, the associated exponents αm,n,j are different.

Thus matrix Λj has the following properties.

i) Each term is a monomial of a set of random variables.

ii) The random variables associated with different rows are independent.

iii) No two elements in the same row have the same exponents.

Therefore, Λj has full column rank as its entries satisfy Lemma 15.

Combining the interference alignment and the full-rank arguments, we conclude that any

point d satisfying (5.3) is achievable.
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5.3.4 Discussion of the achievability of DoF region with multiple antenna trans-

mitters and receivers

In the special case of K-user M antenna interference channel, the achievability of the

total DoF is based on antenna splitting argument as in [39]. However, the antenna splitting

argument cannot be used to establish the DoF region in general because it relies on the fact

that all DoF’s are equal when the total DoF is maximized. When multiple antennas are split,

the messages transmitted on the individual antennas become additional interference for each

other on the receiver side, which may lead to a shrinkage of the DoF region that can be achieved

with the split-antenna transmissions. The DoF region of interference network with multiple

antennas remains to be quantified.

5.4 Discussion

In this section, we outline some alternative schemes that require a lower level of time-

expansion for achieving the same DoF region, and highlight some interesting consequences of

the general results developed in Section 5.3.

5.4.1 Group based alignment scheme

The achievability scheme presented in Section 5.3 requires all interference messages at one

receiver to be aligned with the largest one. This may introduce more alignment constraints

than needed. We give an example here to illustrate this point.

Example 2. Consider a simple scenario of a single antenna network where there are 4 mes-

sages and 5 receivers. Without loss of generality, assuming (5.11) is true and M1 = {1, 2},
M2 = {2}, M3 = {2, 3}, M4 = {2, 3} and M5 = {1, 4}. The alignment constraints associated

with the first two receivers will be the following

H̃14Ṽ 4 ≺ H̃13Ṽ 3, (5.32)

H̃23Ṽ 3 ≺ H̃21Ṽ 1, (5.33)

H̃24Ṽ 4 ≺ H̃21Ṽ 1. (5.34)
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decodable messages aligned interference

(a)

(b)

messages

d2 d1

d3

d4

d2d1 d3

d4

requested message

interference message

Figure 5.4 Example of alignment: (a) the original scheme, (b) the modified
scheme.

However, in this particular case, upon inspection, one can realize that even if receiver 2 also

receives message 1, the DoF region will not change. This is because the constraint at receiver

1 dictates that

d1 + d2 + max(d3, d4) ≤ M. (5.35)

However, this implies the required constraint at receiver 2,

d2 + max(d1, d3, d4) ≤ M. (5.36)

Therefore, receiver 2 can use the same alignment relationship as receiver 1, i.e., it can

also decode message 1 without shrinking the DoF region. The difference between the original

alignment scheme and the modified scheme of receiver 2 is illustrated in Fig. 5.4. ¤

The alignment scheme of Section 5.3 can be modified appropriately using the idea of par-

tially ordered set (poset)[83].

A poset is a set P and a binary relation ≤ such that for all a, b, c ∈ P, we have

1. a ≤ a (reflexivity).
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2. a ≤ b and b ≤ c implies a ≤ c (transitivity).

3. a ≤ b and b ≤ a implies a = b (antisymmetry).

An element b in P is the greatest element if for every element a ∈ P , we have a ≤ b. An

element b ∈ P is a maximal element if there is no element a ∈ P such that a > b. If a poset

has a greatest element, it must be the unique maximal element, but otherwise there can be

more than one maximal element.

For two message request sets Mj and Mj′ , we say Mj ≤ Mj′ if Mj ⊆ Mj′ . With

this partial ordering, the collection of message request sets {Mj : 1 ≤ j ≤ K}, with duplicate

elements (message sets) removed, forms a poset. Let G denote the number of maximal elements

of this poset, and M̄g denote the gth maximal element, 1 ≤ g ≤ G. We divide the receivers

into G group according to the following rule: For receiver j, if there exists a group index g

such that Mj = M̄g, then receiver j is assigned to group g. Otherwise, Mj is not a maximal

element, we can assign receiver j to any group g such that Mj ⊂ M̄g. In the case where

there are multiple maximal elements of the poset that are “larger” than Mj , we can choose

the index of any of one of them as the group index of receiver j.

With our grouping scheme, there will be at least one receiver in each group whose message

request set is a superset of the message request set of any other user in the same group. There

may be multiple such receivers in each group though. In either case, we term one such (or

the one in case there is only one) receiver as the prime receiver. We choose all the receivers

within one group use the same alignment relationship as the prime receiver of that group and

the total number of alignment constraints is reduced. In such a way, the receivers in one group

can actually decode the same messages requested by the prime receiver of that group, and they

can simply discard the messages that they are not interested in.

As to Example 2 given in this section, we can divide 5 receivers into three groups. Receivers

1 and 2 as group 1, receivers 3 and 4 as group 2, receiver 5 as group 3 and prime receivers are 1,

3 and 5. We remark that there are multiple ways of group division as long as one receiver can

only belong to one group, e.g., receiver 1 as group 1, receivers 2, 3 and 4 as group 2, receiver

5 as group 3 and prime receivers are 1, 4 and 5.
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The group based alignment scheme is still valid as it is the scheme for an interference

network whose receiver message requests are from some exclusive sets and multiple receivers

having the same request. In other words, it can be viewed as an interference network with

multiple multicast groups, where the message request of any multicast group can not be a

subset of the requests of the other groups, which of course is a special case of general message

requests we considered in Section 5.3.

Corollary 1. The DoF region of the interference network with general message requests as in

Section 6.2 is determined by the prime receivers, adding non-prime receivers to the system will

not affect the DoF region.

Proof. This can be shown as the inequalities (5.3) associated with the non-prime receivers are

inactive, therefore the region is dominated by the inequalities of prime receivers.

5.4.2 DoF region of K user M antenna interference network

Although the DoF region of multiple antenna case is still an open problem for the general

case, the DoF region of the K user M antenna interference channel has been obtained based

on a simple time sharing argument [84], which we include here for completeness.

Theorem 6. [84] The DoF region of K user M antenna interference channel is

D = {(d1, d2, · · · , dK) : 0 ≤ di + dj ≤ M, ∀1 ≤ i, j ≤ K, i 6= j} . (5.37)

Proof. Without loss of generality, suppose d∗1 ≥ d∗2 ≥ d∗k, k = 3, · · · ,K, and d∗i +d∗j ≤ d∗1 +d∗2 ≤
M , ∀i, j ∈ {1, 2, . . . K}. We would like to show that (d1, d2, . . . , dK) = (d∗1, d

∗
2, . . . , d

∗
K) is

achievable.

It is obvious that

(d1, d2, . . . , dK) = (M, 0, . . . , 0)

can be achieved by single user transmission. It is also known from [39] that the point

(d1, d2, . . . , dK) = (M/2,M/2, . . . , M/2)
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is achievable. Trivially, the point

(d1, d2, . . . , dK) = (0, 0, . . . , 0)

is achievable.

By time sharing, with weights (d1−d2)/M , 2d2/M and 1−d1/M −d2/M among the three

points, in that order, it follows that the point

(d1, d2, . . . , dK) = (d∗1, d
∗
2, d

∗
2, . . . , d

∗
2)

is achievable. This is already at least as large as the DoF we would like to have.

Remark 2. The DoF region for a single-antenna interference channel without time-expansion

has been independently shown to be the convex hull of {e1, . . . ,eK , 1
21} for almost all (in

Lebesgue sense) channels [85]. Interestingly, this agrees with DoF region of the K-user sin-

gle antenna interference channel. For, it can be seen from the proof of Corollary 1 that the

DoF region given in (5.37) can be alternatively formulated as the convex hull of the vectors

{0,Me1, . . . , MeK , M
2 1}. Setting M = 1 will yield the desired equivalence of the two DoF

regions. This equivalence, is non-trivial, however, because it shows that allowing for time-

expansion, and time-diversity (channel variation), the DoF region of the interference channel

is not increased — the DoF is an inherent spatial (as opposed to temporal) characteristic of

the interference channel.

5.4.3 Length of time expansion

For the K-user M antenna interference channel, the total length of time expansion needed

in [39] is smaller than our scheme in order to achieve KM/2 total DoF. This is due to the

fact that when J = K and Mj = {j},∀j, it is possible to choose Ṽ 2 carefully such that

the cardinality of Ṽ 2 is the same as Ṽ 1 and there is one-to-one mapping between these two.

For other asymmetric DoF points, it is in general not possible to choose two messages having

the same cardinality of beamforming column sets. The total time expansion needed could

be reduced if we use the group based alignment scheme in Section 5.4.1 and/or design the

achievable scheme for a specific network with certain DoF.
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5.4.4 The total DoF of an interference network with general message demands

As a byproduct of our previous analysis, we can also find the total degrees of freedom for

an interference network with general message demands.

Corollary 2. The total DoF of an interference network with general message demands can be

obtained by a linear program shown as follows

max
K∑

k=1

dk

s.t.
∑

k∈Mj

dk + max
i∈Mc

j

(di) ≤ M, ∀1 ≤ j ≤ J,d ∈ RK
+ . (5.38)

¤

Corollary 3. If all prime receivers demand β, 1 ≤ β ≤ K − 1, messages, and each of the K

messages are requested by the same number of prime receivers. Then the total DoF is

dtotal =
MK

β + 1
, (5.39)

and is achieved by

d =
(

M

β + 1
,

M

β + 1
, . . . ,

M

β + 1

)
. (5.40)

Proof. Based on Corollary 1, we only need to consider G (where G is the number of groups)

inequalities that associated with prime receivers. We show that (5.40) achieves the maximum

total DoF when all K messages are requested by the same number of prime receivers. Notice

that in this case we can expand the inequality of (5.38) into K − β inequalities by removing

the max() operation. Hence, we will have G(K − β) inequalities in total. Since each message

is requested by Gβ/K prime receivers, for each dk it appears Gβ
K (K − β) times among the

inequalities for prime receivers which request dk, and it appears G − Gβ
K times otherwise.

Summing all the G(K − β)) inequalities we have
(

Gβ

K
(K − β) + G− Gβ

K

) ∑

k

dk ≤ MG(K − β). (5.41)

Hence

∑

k

dk ≤ MK

β + 1
, (5.42)

and the corollary is proven.
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Remark 3. If messages are not requested by the same number of prime receivers it is possible to

achieve a higher sum DoF than (5.39). We only need to show an example here. Assuming that

there are 4 transmitters and 3 prime receivers, the message requests are {1, 2}, {1, 3}, {1, 4}.
If all the transmitters send M/3 DoF, we could achieve (5.39). However, choosing d =

(0, M
2 , M

2 , M
2 ) will lead to sum DoF 3M/2 which is higher.

5.5 Summary

We derived the DoF region of a single antenna interference network with general message

demands. Our achievability scheme for a general point in the DoF region operates by generating

beamforming columns with multiple base vectors over time expanded channel, and aligning the

interference at each receiver to its largest interferer. Next, we showed that the DoF region is

determined by a subset of receivers (called prime receivers), that can be identified by examining

the precise demands of all the receivers. In this case, we can divide the receivers into various

groups. We provided an alternate interference alignment scheme in this scenario, where the

receivers in one group choose the same alignment relationship as the prime receiver of that

group; this allows us to reduce the required level of time-expansion.

5.6 Appendix

Lemma 15. [40, Lemma 1] Consider an M ×M square matrix A such that aij, the elements

in the ith row and jth column of A, is of the form

aij =
K∏

k=1

(
x

[k]
i

)α
[k]
ij

(5.43)

where x
[k]
i are random variables and all exponents are integers, α

[k]
ij ∈ Z. Suppose that

1. x
[k]
i |{x[k′]

i′ ,∀(i, k) 6= (i′, k′)} has a continuous cumulative probability distribution.

2. ∀i, j, j′ ∈ {1, 2, . . . , M} with j 6= j′

(
α

[1]
ij , α

[2]
ij , . . . , α

[K]
ij

)
6=

(
α

[1]
ij′ , α

[2]
ij′ , . . . , α

[K]
ij′

)
. (5.44)
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In other words, each random variable has a continuous cdf conditioned on all the remain-

ing variables. Also, any two terms in the same row of the matrix A differ in at least one

exponent.

Then, the matrix A has a full rank of M with probability 1. ¤

Note: When all the x
[k]
i ’s are independently generated from some continuous distribution,

the first condition in this lemma still holds.
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CHAPTER 6. OTHER WORK: THROUGHPUT ANALYSIS OF MIMO

INTERFERENCE CHANNEL WITH STREAM NUMBER SELECTION

6.1 Introduction

The capacity of MIMO system can be improved if there is CSIT. Though it is a power gain,

such an improvement can be large, especially at low SNR. While the capacity of a point-to-

point MIMO system is relatively well understood, there are fewer results about the capacity

of MIMO interference channel. The capacity of MIMO interference channel with transmitter

side CSI and single-user detection was investigated in [32]. It was shown that the capacity of

an individual link is a convex function for fixed covariance matrix of the other users. However,

feeding back of CSI decreases the system payload. Also, accurate transmitter side CSI may

not be available if the channel is fast fading.

Multi-user detection is also useful as the receiver can perform interference cancellation to

increase the capacity. However, it is only helpful under weak or strong interference, and it does

not outperform orthogonal signal when interference level is comparable to signal level [86].

In this chapter, we discuss the achievable throughput by stream number selection in a

MIMO interference channel, where there is no CSI at the transmitter. We also assume single-

user detection at the receivers. Based on an asymptotic throughput analysis and a piecewise

linear approximation of it, we will show how to select optimal number of streams to maximize

the individual (and overall) throughput. This chapter is organized as follows. In Section 6.2,

we present the system model. The asymptotic analysis and a piecewise linear approximation

to the throughput is proposed in Section 6.3. We compare the proposed approximation and

the numerical calculations in Section 6.4, and conclude in Section 6.5.
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6.2 System model

Consider a K-user MIMO interference channel, assume that the number of transmit and

receive antennas are Nt and Nr, respectively. We assume that all the channels are flat fading,

and the received signals are corrupted by additive white Gaussian noise (AWGN).

6.2.1 The general model

The received signal of the kth user can be expressed as

yk = √
γl,kHk,kxk +

∑K
l=1,l 6=k

√
γk,lHk,lxl + zk, (6.1)

where yk and zk are vectors in CNr×1 denoting the received signal and additive noise at the

kth receiver, respectively; xk ∈ CNt×1 is the transmitted signal of the kth transmitter, and
√

γk,lHk,l ∈ CNr×Nt is the MIMO channel from lth transmitter to kth receiver.

We assume the following: AS1) zk ∼ CN (0, INr). AS2) xk ∼ CN (0,Qk), where the

covariance matrix Qk has an eigen-value decomposition as Qk = UkΛkU
†
k. AS3) All entries

of all Hk,l matrices are i.i.d. CN (0, 1) distributed. AS4) Hk,k is known perfectly at the kth

receiver.

The constants {γk,l : k, l ∈ {1, . . . , K}} control the channel magnitudes. We define an

K ×K matrix Γ whose (k, l)th entry is γk,l. The diagonal entries of Γ control the SNRs and

the off-diagonal entries control INRs.

Define H̄k = [Hk,1, . . . ,Hk,K ], Q̄ = diag(Q1, . . . ,QK), Γ̄ = diag(γk,1INt , . . . , γk,KINt)

and

H̄−k = [Hk,1, . . . ,Hk,k−1,Hk,k+1, . . . Hk,K ] (6.2)

Q̄−k = diag(Qk, . . . ,Qk−1,Qk+1, . . . ,QK) (6.3)

Γ̄−k = diag(γk,1INt , . . . , γk,k−1INt , γk,k+1INt , . . . γl,KINt). (6.4)

We assume that single user detection is used at each receiver, which means that the in-

terferences are treated as noise. The interference plus noise covariance matrix at receiver k is

given by Rk = INr + H̄−kΓ̄−kQ̄−kH̄
†
−k. The achievable rate of the kth link with single user
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detection can be given by [4, 32]

C(k) = E
{

log2

[
det

(
INr + H̄kΓ̄Q̄H̄

†
kR

−1
k

)]}
(6.5)

The rank of Qk determines the number of streams sent out simultaneously by the kth trans-

mitter, and is denoted as Bk. Due to the rotational invariance in the statistical distribution of

the {Hk,l} matrices, {Uk} do not affect the rates. The value of C(k) in (6.5) does not change

if we replace Q̄ and Q̄−k with Λ̄ and Λ̄−k, respectively, where Λ̄ and Λ̄−k are similarly defined

as Q̄ and Q̄−k. Selecting the number of streams will affect the throughput, though.

6.2.2 Simplified model

Having presented the general system model, we specialize the model to a simplified case. In

addition to the assumptions we made in the general model, we further assume that AS5) the

number of streams per user is the same: Bk = B,∀k. AS6) The SNRs and INRs are the same

for all the K users:

γk,l =





γ, if l = k,

η if l 6= k,

k, l = 1, 2, . . . , K. (6.6)

AS7) all the transmitted powers are one: tr(Qk) = 1,∀k. AS8) The power is equally allocated

among all active streams: Qk = diag[(1/B)IB,0Nt−B]. AS9) γ À 1.

Under these simplifying assumptions, we would like to analyze how the number B of streams

affects the rate C(k) for given Nt, Nr and K, under various signaling conditions expressed in

terms of the SNR γ and INR η.

6.3 Analysis of the throughput

Under the simplifying model considered in Section 6.2.2, all the users have identical through-

put, and it is sufficient to analyze the throughput of any user. Define

D1 = diag[(γ/B)IB, (η/B)IB(K−1)], (6.7)

D2 = (η/B)IB(K−1). (6.8)
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Figure 6.1 Illustration of asymptotic analysis.

Let H1 and H2 denote two random matrices of i.i.d. entries CN (0, 1) distributed with sizes

Nr ×BK and Nr ×B(K − 1), respectively. We can obtain that ∀k, C(k) = C1 − C2, where

Ci = E
{

log2

[
det

(
INr + H iDiH

†
i

)]}
, i = 1, 2. (6.9)

Both C1 and C2 can be viewed as the capacity of some point-to-point MIMO system.

Such single-link MIMO capacity has been relatively well understood, e.g., [2]. Closed-form

expressions for computing C1 and C2 can be derived based on results in [87, 88]. The results

there do not allow for equal diagonal entries in the D1 and D2, but modifications can be made

to deal with such cases, which is given in Section 6.6 as an appendix.

The numerical expressions, even though providing an exact value of the average rate, do

not offer insights about how the system should be optimized. In particular, it does not provide

an answer to the question: What should be the optimal number of streams per user? We will

discuss this problem with an asymptotic analysis.
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6.3.1 General behavior of C1 and C2

In this chapter, with a slight abuse of the term DoF, the number dr of receive DoF is the

number of receive antennas Nr. Viewing each of C1 and C2 as the capacity of a point-to-point

MIMO system, we can define the number of transmit DoF for Ci, i = 1, 2, as the number of

diagonal entries that are significantly larger than the remaining ones. And they are denoted

as dt and di, respectively, as the total number of transmit DoF and the number of DoF from

interference. There are three cases regarding the relationship between γ and η. We will use

γ(dB) and η(dB) to denote the SNR and INR in dB.

1. Strong interference level : η À γ. The entries of D1 containing γ are negligible, so

dt = di = B(K−1). Thus, the slope of C1 and C2 as functions of η(dB) at large η(dB) are

the same and can be determined as min (Nr, B(K − 1)). If B(K− 1) < Nr, which means

dr > di, the receiver still has additional DoF to support communication, which leads to

a positive difference between C1 and C2. If B(K − 1) ≥ Nr, there will not be enough

DoF at the receiver, the difference between C1 and C2 goes to zero as η goes to infinity.

2. Weak interference level: η ¿ γ. In this case, dt = B and di = 0. As a result, C2 is

much smaller compared to C1, and C1 is the capacity of an Nr×B MIMO system, which

depends on γ(dB) linearly for large γ(dB) and the slope is min(B,Nr).

3. Moderate interference level. In this case, dt = BK, and di = B(K − 1). There may be a

mismatch between the slope of C1, which is min(Nr, BK), and the slope of C2, which is

min[Nr, B(K − 1)], both viewed as functions of η(dB). The difference will affect the user

throughput C(l).

Fig. 6.1 depicts the general relationship between C1 and C2 for fixed SNR γ and varying INR η,

as well as their asymptotic straight line approximations. We can see the areas A1 and A2 can

be viewed as separating the η(dB) axis into three regions, corresponding to the three previously

discussed cases. The threshold INR levels are denoted as X1 and X2. In the middle region, the

slope of Ci is denoted as Si, i = 1, 2. The slopes S1 and S2 are the same if B(K − 1) ≥ Nr, or
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different, otherwise. This middle region X2 < η(dB) < X1 is more interesting, as the throughput

C(l) outside it does not change much.

6.3.2 Approximation of X2

From Fig. 6.1, we can see that the approximate value of X2 can be obtained by the intercept

of the asymptotic line, which can be calculated from the following lemma.

Lemma 16. [89, Equation (15)] In an i.i.d. Rayleigh-faded N×M MIMO system, the intercept

or power offset of the linear approximation to the capacity for large SNR is

L(N, M) = log2 N +


γ̂ −

N⇑−N⇓∑

l=1

1
l
− N⇑

N⇓

N⇑∑

l=N⇑−N⇓+1

1
l

+ 1


 log2 e (3dB) (6.10)

where 3dB=10 log10 2, γ̂ ≈ 0.5772 is Euler-Mascheroni constant, N⇑ = max(M, N), and N⇓ =

min(M, N). The asymptotic slope S in bits/s/Hz/(3dB) is N⇓. 2

The equivalent SNR of C2 equals (K − 1)η, and hence using the lemma we have

X2 = (10 log10 2)L(Nr, B(K − 1))− 10 log10(K − 1) (dB) (6.11)

6.3.3 Approximation of X1:

The value X1 indicates an approximate interference level that the capacity becomes DoF

limited, which could be investigated from the changes of C1’s slope. It is shown that when the

smallest eigenvalue is significantly smaller than 1/SNR, the corresponding virtual channel is

negligible [89, 90], and thus the slope changes. We will need the following two lemmas.

Lemma 17. (Cauchy-Binet formula) Let A ∈ Cm×n, B ∈ Cn×q and C ∈ Cq×m where m ≤ n

and m ≤ q. Then

det(ABC) =
∑

(s)

∑
(p) det A(s) · det B

(s)
(p) · det C(p)

where (s) is an increasingly ordered subset of {1, ..., n} of size m; (p) is an increasingly ordered

subset of {1, . . . , q}; B
(s)
(p) is a submatrix of B where the rows and columns are those given by

(s) and (p), respectively; A(s) is a submatrix of A with columns given by (s); and C(p) is a

submatrix of C with rows given by (p). 2
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Lemma 18. [91, Lemma II.1] If A is a random matrix of size m × n, with i.i.d. entries

CN (0, 1), and k ≤ min(m,n), then

E
[
det(A(p)

(s)(A
†)(v)

(u))
]

=





k!, if (p) = (u), (s) = (v)

0, otherwise
(6.12)

where (p) and (u) are increasingly ordered subsets of {1, . . . , m}, and (s) and (v) are increas-

ingly ordered subsets of {1, . . . , n}, all of size k. 2

Using these lemmas, we next evaluate C1 in two cases:

1. Case 1: BK ≥ Nr. Define T = Nr − B(K − 1). Using Jensen’s inequality, C1 can be

approximated as

C1 ≈E
{

log2

[
det

(
H1D1H

†
1

)]}

≤ log2

{
E

[
det

(
H1D1H

†
1

)]}

There are two sub-cases. If BK −B ≥ Nr, then

C1 ≈ log2

{
B∑

i=0

(
B

i

) ( γ

B

)i
(

BK −B

Nr − i

) ( η

B

)Nr−i
Nr!

}

= log2

{
e0η

Nr

[
1 +

B∑

i=1

ei

(
γ

η

)i
]}

(6.13)

If BK −B < Nr, then

C1 ≈ log2





BK−Nr∑

j=0

(
B

T + j

) ( γ

B

)T+j
(

BK −B

j

) ( η

B

)Nr−T−j
Nr!





= log2



f0η

BK−B


1 +

BK−Nr∑

j=1

fjγ
Nr

(
γ

η

)j





 (6.14)

where ei’s, fj ’s, i = 0, . . . , B, j = 0, . . . , BK −Nr are certain coefficients not related to γ

and η. When γ ¿ η, the terms inside the summations in (6.13) and (6.14) are negligible,

so the slope with respect to η(dB) will be equal to min[B(K − 1), Nr]. When η is close

to or smaller than γ, these terms will be comparable to 1 and the corresponding slope of

C1 will be smaller.
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2. Case 2: BK < Nr. Using the fact that det(I + AB) = det(I + BA), we have

C1 =E
{

log2

[
det

(
IBK + D1H

†
1H1

)]}

≈ log2

{
E

[
det

(
D1H

†
1H1

)]}

≈ log2

{( γ

B

)B ( η

B

)BK−B
(

Nr

BK

)
(BK)!

}
(6.15)

The slope with respect to η(dB) is therefore B(K − 1).

Based on the discussion on these two cases and the expressions in (6.13) and (6.14), we ap-

proximate X1 as γ(dB).

6.3.4 Calculation of C(l) in limit cases

We now calculate the difference between C1 and C2 under two extreme cases: η(dB) → −∞
and η(dB) →∞. In the first case, C2 → 0, and C1 can be evaluated using Lemma 16 as

C1,η(dB)→−∞(γ) ' min(Nr, B)
(

γ(dB)

10 log2 10 − L(Nr, B)
)

(6.16)

where “'” means that the two quantities are asymptotically the same. Similarly, we also have

the capacity of C2 when η À γ as

C2,ηÀγ(η) ' min(Nr, BK −B)( η(dB)

10 log2 10 − L(Nr, BK −B)). (6.17)

The corresponding capacity of C1 can be approximated as

C1,ηÀγ(η) ' min(Nr, BK −B)( η(dB)

10 log2 10 − Lcorr). (6.18)

where Lcorr is the power offset for correlated Rayleigh fading channel [89, Equation (28)], which

can also be approximated through various bounds, e.g. (6.13), (6.14) and (6.15). Subtracting

C2,ηÀγ(η) from C1,ηÀγ(η), we have

C
(l)
ηÀγ ' min(Nr, BK −B)[L(Nr, BK −B))− Lcorr]. (6.19)

Base on the former analysis, the average achievable throughput can be evaluated through

piecewise linear approximation, shown in Fig. 6.2, which we summarize as follows:
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X2 X1

C
1,η(dB)→−∞

C
(l)
η�γ

Figure 6.2 Illustration of piecewise linear approximation.

Theorem 7. The average throughput of MIMO interference channel satisfying the assumption

AS1)– AS9) can be evaluated through the following piecewise linear approximation:

C(l) ≈





C1,η(dB)→−∞, if η ≤ X2

C
(l)
ηÀγ if η ≥ X1

η(dB)−X2

X1−X2
(C(l)

ηÀγ − C1,η(dB)→−∞) otherwise

where X2 is given in (6.11), X1 = γ(dB); and C1,η(dB)→−∞, C2,ηÀγ(η) and C1,ηÀγ(η) are as

given in (6.16)–(6.18). 2

6.4 Simulation and discussion

To evaluate our analysis result, we show the comparison between the piecewise linear

approximation and the exact capacity curves in Fig. 6.3. The exact curves were obtained

using the modified methods of [87, 88] given in Section 6.6, allowing equal values on the

diagonals of D1 and D2 . The received SNR γ is 30dB. We used Nt = Nr = K = 4.
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The per user throughput shows different characteristics when the stream number increases,

as we discussed. When η > γ, the throughput tends to zero if the number of receive DoF

Nr is less than the number of interference streams B(K − 1), otherwise it tends to a positive

constant. Thus the stream number B in this region should not be larger than bNr/Kc. Notice

that if B = bNr/(K − 1)c and it is larger than zero, C(l) is not zero. However, such B is not

an optimal choice as the receive DoF is not enough to recover all the data streams from the

interference streams. When η < X2, the interference is negligible. We should use as many

streams as possible, namely B = Nt streams in this case. As to the middle part, the rate can

be approximated as a linear function. In the left part of this region, we still favor large number

of streams, but the performance becomes worse and smaller number of streams is preferred as

INR increases. The transition INR for stream number change can be obtained either through

analytical curve or piecewise linear approximation. And the receiver will feedback the optimal

number of streams to the transmitter. In Fig. 6.3, an accurate estimate of critical interference

level from exact numerical calculation is η=18dB, whereas the piecewise linear approximation

gives 20dB.

Finally, we point out that the analytical analysis will suffer from numerical stability when

BK is very large [87], thus the proposed piecewise linear method will be good in analyzing

the throughput of MIMO interference channel with a large number of users and can be used

to determine the optimal stream number.

6.5 Summary

The achievable throughput of MIMO interference channel using stream number selection is

investigated. We assumed that there is no CSI at the transmitters, and single-user detectors.

We proposed a piecewise linear approximation to the average throughput in weak, strong,

and moderate interference regimes. The rate-transition points can be determined through our

piecewise linear approximation. Our results provided rules for determining the optimal number

of streams at various interference levels.
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Figure 6.3 Comparison between the analytical curve and piecewise linear
approximation. γ=30dB, Nt = Nr = K = 4.

6.6 Appendix: Mutual information calculation with repeated eigenvalues

6.6.1 Generic model

We first present the generic model. The quantity we want to calculate has the following

mathematical expression

I = E
{

log2

[
det

(
Iv + WTW †R

)]}
(6.20)

where W is a v× u matrix with each entry i.i.d. CN (0, 1) distributed. T is an u× u diagonal

matrix with its diagonal entry [T ]ii = 1/ti, R is a v × v diagonal matrix with its diagonal

entry [R]jj = 1/rj . We assume that t = [t1, . . . , tu] and r = [r1, . . . , tv] are ordered in non-

decreasing (or non-increasing) order. The closed-form solutions of (6.20) have been given in

[88]. However, the results therein only consider the case that the eigenvalues of T (R) are

different. The generic model has been widely used for calculating the mutual information of
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Nr ×Nt MIMO point-to-point Rayleigh fading channel which can be given as

y = Hx + n, (6.21)

where x ∈ CNt×1 has zero mean and covariance matrix Q. n ∼ CN (0, INt) is AWGN.

The mutual information of this MIMO system, when H is perfectly known at the receiver

and with no CSI at transmitter, is given by [4]

I = E
{

log2

[
det

(
INr + HQH†

)]}
. (6.22)

Recall (2.4), the full correlated Rayleigh fading case can be represented by

H = Φ1/2
R HwΦ1/2

T . (6.23)

Denote the eigenvalues of Φ1/2
T Q(Φ1/2

T )† and ΦR as ΛT and ΛR, respectively. Using the fact

that det(I + AB) = det(I + BA), ΛR = Λ†
R and because the product of Hw with unitary

matrix would not change its distribution Hw, (6.22) can be modified as follows

I = E
{

log2

[
det

(
INr + HwΛT H†

wΛR

)]}
(6.24)

with t = diag(Λ−1
T ) and r = diag(Λ−1

R ) . Thus, the mutual information of such a full-correlated

MIMO channel can be calculated through (6.20), with v = NR, u = Nt. When some eigenvalues

of ΛT (ΛR) are zero, we shall have u = rank(ΛT ) (v = rank(ΛR)) and T (R) contains all the

nonzero diagonal entries of ΛT (ΛR).

6.6.2 Solution of generic model without repeated eigenvalues

We will first re-present the results from [88] in the following before developing the solution

when there is repeated eigenvalues. Define N = min(u, v) and M = max(u, v). If v > u, the

value of t and r are interchanged.

The analytical solution of (6.20) is given by

I =
M−N−1∑

l=1

l

N + l
+

N∑

k=1

det L̃k

det L
−M − 1 (6.25)

where L and L̃k, k = 1, . . . , N are M ×M matrices and they can be calculated as follows
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1. Calculation of L

[L]ij =





F (tirj) j ≤ N

tj−1
i j > N

(6.26)

where F (x) is given as

F (x) = exΓ(M, x) (6.27)

and Γ(α, x) is the upper incomplete Gamma function. (Note: there are typos in

equations (80) and (85) of [88], where F (tirj ,M + z) should be F (tirj , z). And because

the quantity (6.20) is calculated at z = 0, we have a simpler form of F (x) given in (6.27).)

2. Calculation of L̃k

L̃k is given by the matrix L, with the kth column replaced by the kth column of an

M ×N matrix D, whose elements are

[D]ij = D(tirj ,M) (6.28)

=
(
exxM (−1)Mh(M−1)(x)

) ∣∣∣
x=tirj

(6.29)

with the superscript of h(x) indicating the number of derivatives applied and h(x) is

h(x) = x−1Ei(−x), (6.30)

where Ei(·) is the exponential integral.

6.6.3 Solution of generic model with repeated eigenvalues

When some eigenvalues are the same, multiple rows or columns in L and L̃k are the same

hence the determinants of these matrices are zero. Define zk = det L̃k/ det L. First, we only

consider there are multiple entries of t are the same. Denote the ith row of L̃k and L as αk,i(ti)

and βi(ti), respectively. Then

zk =
det[αk,1(t1); . . . ;αk,M (tM )]

det[β1(t1); . . . ;βM (tM )]
, (6.31)

and we need the following lemma to deal with this problem, which is a modified version of

lemma 6 in [88].
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Lemma 19. The ratio of two determinants given in (6.31) when some ti’s are the same can

be calculated as

lim
t1,...,tn→t1

zk =
det[αk,1(t1);α

(1)
k,1(t1); . . . ;α

(n−1)
k,1 (t1);αk,p+1(tp+1); . . . ;αk,M (tM )]

det[β1(t1);β
(1)
1 (t1); . . . ;β

(n−1)
1 (t1);βp+1(tp+1); . . . ;βM (tM )]

, (6.32)

where n is the multiplicity of t1. 2

If there are multiple entries of r are the same, we need to apply Lemma 19 in the column

direction once more.

We first define two vectors p = [p1, . . . , pM ], q = [p1, . . . , qN ], where pi is the multiplicity

of ti and qj is the multiplicity of rj . Using Lemma 19 in both row and column directions, the

method presented in Section 6.6.2 can be modified in the following way.

When there are repeated eigenvalues, L can be obtained as follows

[L]ij =





F (pi−1,qj−1)(tirj) 1 ≤ j ≤ N

0 N < j < pi

b(i, j)ta(ij)
i pi ≤ j ≤ M

(6.33)

where

a(i, j) =





j − 1, pi = 1

max(a(i− 1, j)− 1, 0), pi 6= 1
(6.34)

and

b(i, j) =





1, if pi = 1

a(1, j)!
a(i, j)!

otherwise
(6.35)

where F (n,m)(tirj) stands for the nth derivative of ti and the mth derivative of rj and it can

be solved iteratively.

Lemma 20. The nth derivative of ti and the mth derivative of rj can be expressed as

F (n,m)(tirj) =
[xMPn,m(x) + Qn,m(x)F (x)]|x=tirj

tni rm
j

, (6.36)

where Pn,m(x) and Qn,m(x) are two polynomials of x.
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Proof. When n = 0,m = 0, we have P0,0(x) = 0, Q0,0(x) = 1. Supposing the lemma is true for

n and m and applying derivative of ti to F (n,m)(tirj), we have

Pn+1,m(x) = (M − n)Pn,m(x) + xP ′
n,m(x)−Qn,m(x), (6.37)

Qn+1,m(x) = −nQn,m(x) + xQ′
n,m(x) + xQn,m(x), (6.38)

and they both are polynomials of x.

Furthermore, noticing that ti and rj are interchangeable, the lemma holds for all n ≥
0,m ≥ 0.

We can calculate L̃k following the same way in Section 6.6.2, where the entries of matrix

D can be calculated using following two lemmas.

Lemma 21. The mth derivative of h(x) can be expressed as

h(m)(x) = P̂m(x)e−x + (−1)mm!x−(m+1)Ei(−x), (6.39)

where P̂m(x) is a polynomial of x.

Proof. If m=0, P̂0(x) = 0. Assuming the lemma holds for m,we have:

P̂m+1(x) = P̂ ′
m(x)− P̂m(x) + (−1)mm!x−(m+1)−1. (6.40)

Hence the lemma holds for all m ≥ 0.

Lemma 22. If there are repeated values of ti and rj, the entries of D matrix can be modified

as:

[D]ij = D(pi−1,qj−1)(tirj ,M), (6.41)

where D(n,m)(tirj ,M) stands for the nth derivative of ti and the mth derivative of rj and it

has the general form for n ≥ m

D(n,m)(tirj ,M) =
[P̌n,m(x) + Q̌n,m(x)exEi(−x)]|x=tirj

tn−m
i

, (6.42)

where P̌n,m(x) and Q̌n,m(x) are two polynomials of x. (To the case that n < m, simply

switching ti and rj as well as the numbers of derivative applied, we can obtain the corresponding

value.)
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Proof. when n = 0,m = 0, D(0,0)(tirj ,M) can be given as

D(0,0)(tirj ,M) =
[
(−1)MxM P̂M−1(x)− (M − 1)!exEi(−x)

] ∣∣∣
x=tirj

. (6.43)

Thus, we have P̌0,0(x) = (−1)MxM P̂M−1(x), Q̌0,0(x) = −(M − 1)!.

Assuming the lemma holds for one n,m pair where n > m, then we have

P̌n+1,m(x) = (m− n)P̌n,m(x) + xP̌ ′
n,m(x) + Q̌n,m(x), (6.44)

Q̌n+1,m(x) = (m− n)Q̌n,m(x) + xQ̌′
n,m(x) + xQ̌n,m(x), (6.45)

P̌n,m+1(x) = P̌ ′
n,m(x) + x−1Q̌n,m(x), (6.46)

Q̌n,m+1(x) = Q̌n,m(x) + Q̌′
n,m(x), (6.47)

which are all polynomials of x. Hence the lemma holds for all n ≥ m ≥ 0.

Then the exact value of (6.20) can be readily calculated using (6.25). However, direct

calculation is not stable as L̃k’s and L are usually ill-conditioned. Thus, row and column

scaling should be carried first to improve the numerical stability. Furthermore, noticing that

only one column in L̃k is different from L, we can simplify the calculation by using Gramer’s

rule [92].

Let V be a (M − N) × N matrix or an empty matrix (when M = N); Z is an N × N

matrix with [Z]k,k = zk. The off-diagonal entries of Z are of no interest. We can view Z as

(part of) the solution of the following linear equations

L




Z

V


 = D (6.48)

The mutual information can then be written using Cramer’s rule

I =

(
M−N−1∑

l=1

l

N + l
+ tr(Z)−M − 1

)
log2 e bits (6.49)

and we have the following theorem:

Theorem 8. The quantity given in (6.20) can be calculated through (6.49) when T and R

have repeated eigenvalues, where Z is the solution of (6.48); L is given by (6.33); D is given

by (6.41).
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

We investigated the DoF region of wireless interference network in this thesis for both

two-user case and multi-user case. We first studied the DoF region of two-user FIC and ZIC.

For the ZIC, we derived the DoF region when CSIT is available. As to the no CSIT case,

the DoF regions with the usage of reconfigurable transmit antennas are solved for both FIC

and ZIC. Although the DoF region of FIC was solved recently under isotropic fading channel

assumption, We showed that by using reconfigurable transmit antennas at one transmitter the

DoF region can be larger. For this special case, we developed the DoF region outer bound as a

function of the number of available transmit antenna modes. Based on that, we investigated the

achievability schemes for two cases: 1) when there are sufficient antenna modes, and 2) when

there are not so many modes. We proposed a systematic way of constructing beamforming and

nulling matrices, which has an interesting space-frequency domain interpretation. Our results

closed the gap between the DoF region of two-user FIC with isotropic fading and staggered

fading without CSIT, where it was known that more DoF can be achieved in the second case

by exploring the channel correlation structures.

We then investigated the DoF region of an interference network with multiple transmitters

and receivers, where the number of transmitters is not necessarily equal to the number of

receivers. In addition, we considered the case that each receiver can request arbitrary set of

messages from different transmitters. The interference network we considered generalizes the

multiple unicasts and multiple multicasts scenarios in this area, for which only the total number

of DoF is studied. We showed that the DoF region is achievable by generalizing the interference

alignment scheme proposed by Cadambe and Jafar. The key is using multiple base vectors to

generate beamforming matrices over time-expansion channel and aligning interference signals
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at each receiver to its largest interferer. The proposed scheme can be used to achieve any

rational DoF point in the DoF region, which includes the vertices of the convex DoF region.

We also showed that the DoF region depends on a subset of receivers and we developed a

modified group based alignment scheme which requires less number of time expansion.

There are still many interesting related problems that have not been considered in this

thesis. We give several of them as future research topics in the following

1. The usage of reconfigurable antenna for other interference networks The reconfigurable

antenna was proposed to be used at receiver side under MIMO BC to achieve the total

DoF. In this thesis, we explored its usage at transmitter side. It is interesting to consider

the usage of reconfigurable antennas in MIMO X channel as X channel contains both

BC and FIC. In [48], it is shown that using reconfigurable antennas for single antenna X

channel, the total DoF 4/3 can be achieved without CSIT. However, the generalization

to multiple antenna case with different number of antennas is still open.

2. DoF region of multiple antenna interference networks with general message demands

As we discussed before, the achievability of the single antenna case cannot be directly

applied. Interestingly, the achievability scheme of DoF point (M
2 , M

2 , · · · , M
2 ) of the K-

user M antenna interference channel is based on antenna splitting argument, which is

used to achieve the DoF region with the time-sharing argument. The general achievability

scheme for the multiple antenna case is still open.

3. General message demand structures in other interference networks If transmitters have

multiple messages, the receiver demands may result in alignment constraints that cannot

be satisfied in a simple manner. One example is the MIMO wireless X network [40]. Its

total number of DoF is outer bounded as AMN
M+N−1 , where M and N are the numbers of

transmitters and receivers, respectively. All transmitters and receivers are equipped with

A antennas. Each transmitter has different messages for all the receivers. It is shown

in [40] that the bound of the total DoF is tight only when the number of antennas A

equals 1. The approach for multiple antenna case is based on antenna splitting argument,
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which eliminates the possibility of joint coding among different antennas at transmitter

side. Apparently, the scheme we proposed in this thesis can only handle the case where

transmitters have single message. The DoF region of multiple messages case remains

open.
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